【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示).則分?jǐn)?shù)在[70,80)內(nèi)的人數(shù)是

【答案】30
【解析】解:由題意,分?jǐn)?shù)在[70,80)內(nèi)的頻率為:1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3.
則分?jǐn)?shù)在[70,80)內(nèi)的人數(shù)是0.3×100=30人;
所以答案是:30.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對(duì)x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實(shí)數(shù)解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (a>b>0)的圖象是曲線(xiàn)C.

(1)在如圖的坐標(biāo)系中分別做出曲線(xiàn)C的示意圖,并分別標(biāo)出曲線(xiàn)C與x軸的左、右交點(diǎn)A1 , A2
(2)設(shè)P是曲線(xiàn)C上位于第一象限的任意一點(diǎn),過(guò)A2作A2R⊥A1P于R,設(shè)A2R與曲線(xiàn)C交于Q,求直線(xiàn)PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=|sinx|+|cosx|的最小正周期為m,函數(shù)g(x)=sin3x﹣sinx的最大值為n,則mn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是橢圓上一點(diǎn),|PF1|=λ|PF2|,∠F1PF2=,則橢圓離心率的取值范圍為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).

(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點(diǎn),且滿(mǎn)足BM⊥B1D,求證:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于兩個(gè)定義域均為D的函數(shù)f(x),g(x),若存在最小正實(shí)數(shù)M,使得對(duì)于任意x∈D,都有|f(x)﹣g(x)|≤M,則稱(chēng)M為函數(shù)f(x),g(x)的“差距”,并記作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)設(shè)f(x)= (x∈[1,e ]),g(x)=mlnx(x∈[1,e ]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求滿(mǎn)足條件的最大正整數(shù)a;
②若a=2,且||f(x),g(x)||=2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax(a∈R).
(1)若直線(xiàn)y=3x﹣1是函數(shù)f(x)圖象的一條切線(xiàn),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在[1,e2]上的最大值為1﹣ae(e為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的值;
(3)若關(guān)于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且僅有唯一的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)H(0,﹣8),點(diǎn)P在x軸上,動(dòng)點(diǎn)F滿(mǎn)足PF⊥PH,且PF與y軸交于點(diǎn)Q,Q為線(xiàn)段PF的中點(diǎn).
(1)求動(dòng)點(diǎn)F的軌跡E的方程;
(2)點(diǎn)D是直線(xiàn)l:x﹣y﹣2=0上任意一點(diǎn),過(guò)點(diǎn)D作E的兩條切線(xiàn),切點(diǎn)分別為A、B,取線(xiàn)段AB的中點(diǎn),連接DM交曲線(xiàn)E于點(diǎn)N,求證:直線(xiàn)AB過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案