【題目】若有窮數(shù)列(是正整數(shù)),滿足即(是正整數(shù),且),就稱該數(shù)列為“對(duì)稱數(shù)列”。例如,數(shù)列與數(shù)列都是“對(duì)稱數(shù)列”.
(1)已知數(shù)列是項(xiàng)數(shù)為9的對(duì)稱數(shù)列,且,,,,成等差數(shù)列, , ,試求, , , ,并求前9項(xiàng)和.
(2)若是項(xiàng)數(shù)為的對(duì)稱數(shù)列,且構(gòu)成首項(xiàng)為31,公差為的等差數(shù)列,數(shù)列前項(xiàng)和為,則當(dāng)為何值時(shí), 取到最大值?最大值為多少?
(3)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中是首項(xiàng)為1,公比為2的等比數(shù)列.求前項(xiàng)的和 .
【答案】(1)見(jiàn)解析(2)當(dāng)時(shí), 取得最大值. 的最大值為481.(3)
【解析】試題分析:
(1)由數(shù)列新定義的知識(shí)結(jié)合題意可得=11, =8, , ,且=66
(2)利用前n項(xiàng)和公式結(jié)合二次函數(shù)的性質(zhì)可得當(dāng)時(shí), 取得最大值. 的最大值為481.
(3)結(jié)合通項(xiàng)公式分類討論可得前項(xiàng)的和.
試題解析:
解:(1)設(shè)前5項(xiàng)的公差為,則,解得 ,
∴=11, 2+2×3=8, ,
∴=2(2+5+8+11+14)-14=66
(2)
∴
當(dāng)時(shí), 取得最大值. 的最大值為481.
(3).
由題意得 是首項(xiàng)為,公比為的等比數(shù)列.
當(dāng)時(shí), .
當(dāng)時(shí),
綜上所述,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球?yàn)閮纱稳∏颍┑某晒θ》ù螖?shù)為隨機(jī)變量X,求X的分布列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分別是棱BC,CC1上的點(diǎn)(點(diǎn)D不同于點(diǎn)C),且AD⊥DE,F為B1C1的中點(diǎn).
求證:(1)平面ADE⊥平面BCC1B1.
(2)直線A1F∥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017屆河北省衡水中學(xué)高三上學(xué)期六調(diào)】已知函數(shù),其中均為實(shí)數(shù),為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的極值;
(2)設(shè),若對(duì)任意的恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)療研究所開(kāi)發(fā)一種新藥,如果成人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè):服藥后每毫升血液中的含藥量y與時(shí)間t之間近似滿足如圖所示的曲線.
(1)寫出服藥后y與t之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,每毫升血液中含藥量不少于4 μg時(shí)治療疾病有效,假若某病人一天中第一次服藥為上午7:00,問(wèn):一天中怎樣安排服藥時(shí)間(共4次)效果最佳?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的左焦點(diǎn)F為圓的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為。
(I)求橢圓C的方程;
(II)已知經(jīng)過(guò)點(diǎn)F的動(dòng)直線與橢圓C交于不同的兩點(diǎn)A、B,點(diǎn)M坐標(biāo)為(),證明: 為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在空間四邊形ABCD中,AB=CD,AB與CD成30°角,E,F分別為BC,AD的中點(diǎn),求EF與AB所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對(duì)數(shù)的底數(shù).
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線;
(2)若方程f(x)=x3+x2+m有3個(gè)不同的根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0}.命題p:A∩B≠;命題q:AC.
(1)若命題p為假命題,求實(shí)數(shù)a的取值范圍;
(2)若命題p∧q為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com