【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).

(1)求曲線f(x)在點(1,f(1))處的切線;

(2)若方程f(x)=x3x2+m有3個不同的根,求實數(shù)m的取值范圍.

【答案】見解析

【解析】(1)因為f(x)=(-x2+x-1)ex,

所以f′(x)=(-2x+1)ex+(-x2+x-1)ex=(-x2-x)ex.

所以曲線f(x)在點(1,f(1))處的切線斜率為

k=f′(1)=-2e.

又f(1)=-e,

所以所求切線方程為y+e=-2e(x-1),即2ex+y-e=0.

(2)因為f′(x)=(-2x+1)ex+(-x2+x-1)ex=(-x2-x)ex

當x<-1或x>0時,f′(x)<0;

當-1<x<0時,f′(x)>0,

所以f(x)=(-x2+x-1)ex在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,

所以f(x)在x=-1處取得極小值f(-1)=-,在x=0處取得極大值f(0)=-1.

令g(x)=x3x2+m,得g′(x)=x2+x.

當x<-1或x>0時,g′(x)>0;

當-1<x<0時,g′(x)<0,

所以g(x)在(-∞,-1)上單調(diào)遞增,在(-1,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.

故g(x)在x=-1處取得極大值g(-1)=+m,在x=0處取得極小值g(0)=m.

因為方程f(x)=x3x2+m有3個不同的根,

即函數(shù)f(x)與g(x)的圖象有3個不同的交點,

所以,即.

所以-<m<-1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱錐PABCD中,底面邊長為2,側棱長為,M,N分別為ABBC的中點,以O為原點,射線OM,ON,OP分別為x軸、y軸、z軸的正方向建立空間直角坐標系.若EF分別為PA,PB的中點,求A,BC,DE,F的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若有窮數(shù)列是正整數(shù)),滿足是正整數(shù),且),就稱該數(shù)列為“對稱數(shù)列”。例如,數(shù)列與數(shù)列都是“對稱數(shù)列”.

(1)已知數(shù)列是項數(shù)為9的對稱數(shù)列,且,,,,成等差數(shù)列, , ,試求, , , ,并求前9項和.

(2)若是項數(shù)為的對稱數(shù)列,且構成首項為31,公差為的等差數(shù)列,數(shù)列項和為,則當為何值時, 取到最大值?最大值為多少?

(3)設項的“對稱數(shù)列”,其中是首項為1,公比為2的等比數(shù)列.求項的和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.

(1)若λ=0,求f(x)的最大值;

(2)若曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在的展開式中,第5項的系數(shù)與第3項的系數(shù)之比是563

1)求展開式中的所有有理項;

2)求展開式中系數(shù)絕對值最大的項.

3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)lg(axbx),(a>1>b>0).

(1)f(x)的定義域;

(2)f(x)(1,+∞)上遞增且恒取正值a,b滿足的關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017長沙模擬】如圖,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(1)求證:AD⊥C1E;

(2)當異面直線AC,C1E所成的角為60°時,求三棱錐C1A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017銀川一中高考模擬文一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N。

(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);

(2)證明:直線MN∥平面BDH;

(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某幾何體的三視圖,則該幾何體的體積為( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

同步練習冊答案