(本小題14分)設 ,定義,其中

(1)求的值;

(2)求數(shù)列的通項公式;

(3)若,求的值.

 

【答案】

 

【解析】解:(1,…………………………………………2

          (2……………………4

    ,

則數(shù)列是以為首項,-為公比的等比數(shù)列,

…………………………………8

(3

兩式相減得:  .         ……………………14分 

 

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題14分)設為自然數(shù),已知

,,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題14分)

設函數(shù),其中

(I)當時,判斷函數(shù)在定義域上的單調性;

(II)求函數(shù)的極值點;

(III)證明對任意的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學 來源:寧波市2010屆高三三?荚嚴砜茢(shù)學試題 題型:解答題

(本小題14分)設,  

   (1)當時,求曲線處的切線方程;

(2)如果存在,使得成立,

求滿足上述條件的最大整數(shù);[來源:學?啤>W(wǎng)Z。X。X。K]

(3)如果對任意的,都有成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年浙江省高二下學期第二次階段性考試重點班文數(shù) 題型:解答題

(本小題14分)設是定義在上的單調增函數(shù),滿足,

(1)求;       (2)若,求的取值范圍。

 

查看答案和解析>>

同步練習冊答案