【題目】已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)若,且a分別與,垂直,求向量a的坐標(biāo);
(2)若∥,且,求點P的坐標(biāo).
【答案】(1)或;(2)或
【解析】
(1)=(﹣2,﹣1,3),=(1,﹣3,2).設(shè)=(x,y,z),由于||=,且分別與、垂直,可得,解出即可.(2) 設(shè),
,解之即得的值,即得=(6,-4,-2)或=(-6,4,2).再求出點P的坐標(biāo).
(1)=(﹣2,﹣1,3),=(1,﹣3,2).
設(shè)=(x,y,z),
∵||=,且分別與、垂直,
∴,
解得,或.
∴=(1,1,1),(﹣1,﹣1,﹣1).
(2)因為∥,所以可設(shè).
因為=(3,-2,-1),
所以=(3λ,-2λ,-λ).
又因為,
所以,
解得λ=±2.
所以=(6,-4,-2)或=(-6,4,2).
設(shè)點P的坐標(biāo)為(x,y,z),則=(x,y-2,z-3).
所以或
解得或
故所求點P的坐標(biāo)為(6,-2,1)或(-6,6,5).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,(為坐標(biāo)原點),直線:.拋物線:.
(Ⅰ)過直線上任意一點作圓的兩條切線,切點為.求四邊形的面積最小值;
(Ⅱ)若圓過點,且圓心在拋物線上,是圓在軸上截得的弦,試探究 運動時,弦長是否為定值?并說明理由;
(Ⅲ) 過點的直線分別與圓交于點兩點,若,問直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=sinx的圖象,只要將函數(shù)y=cos2x的圖象( 。
A.向右平移個單位長度,再將各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變
B.向左平移個單位長度,再將各點的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變
C.向左平移個單位長度,再將各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變
D.向右平移個單位長度,再將各點的橫坐標(biāo)縮短到原來的 , 縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ax2+bx-ln x的導(dǎo)函數(shù)的零點分別為1和2.
(I) 求a , b的值;
(Ⅱ)若當(dāng)時,恒成立, 求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,側(cè)棱SD⊥底面ABCD,點E是SC的中點,點F在SB上,且EF⊥SB.
(1)求證:SA∥平面BDE;
(2)求證SB⊥平面DEF;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三年級從甲(文)乙(理)兩個年級組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽儯M分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績在90分以上的學(xué)生中隨機取兩名學(xué)生,求甲組至少有一名學(xué)生的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)=ex , 其中e是白然對數(shù)的底數(shù),e=2.71828…
(I)若函數(shù)φ(x)=f(x)﹣求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)f(x)的圖象上一點A(x0 , f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0 , 使得直線l與曲線y=g(x)相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com