【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值為( 。
A.4
B.5
C.6
D.7
【答案】A
【解析】分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,
可知:該程序的作用是:
輸出不滿足條件S=0+1+2+8+…<100時,k+1的值.
第一次運行:滿足條件,s=1,k=1;
第二次運行:滿足條件,s=3,k=2;
第三次運行:滿足條件,s=11<100,k=3;滿足判斷框的條件,繼續(xù)運行,
第四次運行:s=1+2+8+211>100,k=4,不滿足判斷框的條件,退出循環(huán).
故最后輸出k的值為4.
故選:A.
【考點精析】本題主要考查了程序框圖的相關知識點,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】關于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關于x的不等式bx2-ax-2>0的解集為( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
【答案】B
【解析】
利用不等式的解集與方程根的關系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.
∵關于x的不等式ax2+bx+2>0的解集為(﹣1,2),
∴﹣1,2是ax2+bx+2=0(a<0)的兩根
∴
∴a=﹣1,b=1
∴不等式bx2﹣ax﹣2>0為x2+x﹣2>0,
∴x<﹣2或x>1
故選:B.
【點睛】
(1)二次函數(shù)圖象與x軸交點的橫坐標、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式。
(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關二次函數(shù)的問題,利用數(shù)形結合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法.
【題型】單選題
【結束】
6
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)若,且a分別與,垂直,求向量a的坐標;
(2)若∥,且,求點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于任意實數(shù)a,b,定義max{a,b}= , 已知在[﹣2,2]上的偶函數(shù)f(x)滿足當0≤x≤2時,f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有兩個根,則m的取值范圍是( )
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高三年級800名學生在一次百米測試中,成績全部在12秒到17秒之間,抽取其中50個樣本,將測試結果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據(jù)上述分組得到的頻率分布直方圖.
(1)若成績小于13秒被認為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數(shù);
(2)請估計本年級800名學生中,成績屬于第三組的人數(shù);
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,以的四個頂點為頂點的四邊形的面積為.
(1)求橢圓的方程;
(2)設,分別為橢圓的左、右頂點,是直線上不同于點的任意一點,若直線,分別與橢圓相交于異于,的點、,試探究,點是否在以為直徑的圓內?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn(n∈N*),且滿足an+2Sn=2n+2.
(1)求數(shù)列{an}的通項公式;
(2)求證: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com