【題目】如圖,在三棱柱中,、、、分別是、、、的中點.
(1)求證:、、、四點共面;
(2)求證:平面平面;
(3)若、分別為、的中點,求證:平面平面.
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
【解析】
(1)證明出,即可證明出、、、四點共面;
(2)證明,可得平面,證明四邊形是平行四邊形,可得出,可證明出平面,再利用面面平行的判定定理可證明出結(jié)論;
(3)連接交于點,可得出,可證明出平面,證明出四邊形為平行四邊形,可得出,可得出平面,然后利用面面平行的判定定理可證明出結(jié)論.
(1)是的中位線,.
在三棱柱中,且,則四邊形為平行四邊形,
,,因此,、、、四點共面;
(2)、分別為、的中點,.
平面,平面,平面.
在三棱柱中,且,則四邊形為平行四邊形,
且,
、分別為、的中點,且,
四邊形是平行四邊形,則,
平面,平面,平面.
,且平面,平面,平面平面;
(3)如圖所示,連接,設(shè)與的交點為,連接,
四邊形是平行四邊形,是的中點,
為的中點,.
平面,平面,平面.
由(1)知,四邊形為平行四邊形,則且,
、分別為、的中點,所以,且,
四邊形為平行四邊形,,
又平面,平面,平面.
又,平面,平面,
平面平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程與直線的直角坐標方程;
(2)在曲線上取兩點,與原點構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | |||
span>女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=e2x﹣ax2+1在[1,2]上是減函數(shù),則實數(shù)a的取值范圍是( 。
A. [,+∞) B. (,+∞) C. [,+∞) D. (,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017年10月1日起施行.作為民法典的開篇之作,《民法總則》與每個人的一生息息相關(guān).某地區(qū)為了調(diào)研本地區(qū)人們對該法律的了解情況,隨機抽取50人,他們的年齡都在區(qū)間上,年齡的頻率分布及了解《民法總則》的入數(shù)如下表:
年齡 | ||||||
頻數(shù) | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法總則》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填寫下面列聯(lián)表,并判斷是否有的把握認為以45歲為分界點對了解《民法總則》政策有差異;
年齡低于45歲的人數(shù) | 年齡不低于45歲的人數(shù) | 合計 | |
了解 | |||
不了解 | |||
合計 |
(2)若對年齡在,的被調(diào)研人中各隨機選取2人進行深入調(diào)研,記選中的4人中不了解《民法總則》的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)已知直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為,,,假設(shè)各盤比賽結(jié)果相互獨立.
(I)求紅隊至少兩名隊員獲勝的概率;
(II)用表示紅隊隊員獲勝的總盤數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com