已知函數(shù)f(x)定義域?yàn)閇0,1],且同時(shí)滿(mǎn)足:

  ①對(duì)任意x∈[0,1],總有f(x)≥3.

 、趂(1)=4

 、廴魓1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3

(Ⅰ)試求f(0)的值;

(Ⅱ)試求函數(shù)f(x)的最大值;

(Ⅲ)試證明:當(dāng)x∈時(shí),f(x)<3x+3;當(dāng)x∈(n∈N*)時(shí),f(x)<3x+3.(文科不做此問(wèn)后半部分)

答案:
解析:

  (1)f(0+0)≥f(0)+f(0)-3,f(0)≤3,又f(0)≥3

  ∴f(0)=3

  (2)設(shè)0≤x1<x2≤1

  f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-3,f(x2-x1)≥3

  ∴f(x2)≥f(x1)+3-3即f(x2)≥f(x1)

  ∴f(x)在[0,1]增函數(shù)

  ∴f(x)≤f(1)=4即f(x)的最大值為4.

  (3)∵f(x)在上是增函數(shù).

  ∴當(dāng)x∈時(shí),f(x)≤f(1)=4.

  而在上,3x+3>3,+3=4

  ∴f(x)<3x+3.x∈

  用數(shù)學(xué)歸納法證明:當(dāng)n∈N時(shí),x∈時(shí)f(x)<3x+3

  ①n=0時(shí)已證.

 、诩僭O(shè)n=k時(shí),當(dāng)x∈,f(x)<3x+3

  則x∈時(shí),則3x∈,f(3x)<9x+3

  又由已知f(3x)≥f(2x)+f(x)-3≥f(x)+f(x)-3+f(x)-3=3f(x)-6

  即3f(x)-6<9x+3

  ∴f(x)<3x+3即n=k+1時(shí),命題亦成立.

  ∴n∈N時(shí),命題成立,則n∈N*命題當(dāng)然成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
sinπx
(x2+1)(x2-2x+2)
.關(guān)于下列命題正確的個(gè)數(shù)是( 。
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)既有最大值又有最小值;
③函數(shù)f(x)的定義域是R,且其圖象有對(duì)稱(chēng)軸;
④對(duì)于任意x∈(-1,0),f′(x)<0(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)).
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x(x≥0)
log3(-x)(x<0)
,函數(shù)g(x)=f2(x)+f(x)+t(t∈R).關(guān)于g(x)的零點(diǎn),下列判斷不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+
1
x3
g(x)=x2-
1
x2
,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年南通市教研室高三數(shù)學(xué)考前預(yù)測(cè)題 題型:044

  已知函數(shù)f(x)定義域?yàn)閇0,1],且同時(shí)滿(mǎn)足

  (1)對(duì)于任意x∈[0,1],且同時(shí)滿(mǎn)足;

  (2)f(1)=4;

  (3)若x1≥0,x2≥0,x1+x2≤1,則有f(x1x2)≥f(x1)+f(x2)-3.

(Ⅰ)試求f(0)的值;

(Ⅱ)試求函數(shù)f(x)的最大值;

(Ⅲ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足a1=1,Sn(an-3),n∈N*

求證:f(a1)+f(a2)+…+f(an)<log3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第四次周考文科數(shù)學(xué)試卷 題型:解答題

.(本小題滿(mǎn)分10分)選修4-5:不等式選講

  已知函數(shù)f(x)=|x-a|-2|x-1|(a∈R).

(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)最大值;

(Ⅱ)解關(guān)于x的不等式f(x)≥0.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案