已知坐標(biāo)平面上的兩點(diǎn),動(dòng)點(diǎn)P到A、B兩點(diǎn)距離之和為常數(shù)2,則動(dòng)點(diǎn)P的軌跡是(   )
A.橢圓        B.雙曲線       C.拋物線       D.線段
D
分析:計(jì)算出A、B兩點(diǎn)的距離結(jié)合題中動(dòng)點(diǎn)P到A、B兩點(diǎn)距離之和為常數(shù)2,由橢圓的定義進(jìn)而得到動(dòng)點(diǎn)P的軌跡是線段.
解答:解:由題意可得:A(-1,0)、B(1,0)兩點(diǎn)之間的距離為2,
又因?yàn)閯?dòng)點(diǎn)P到A、B兩點(diǎn)距離之和為常數(shù)2,
所以|AB|=|AP|+|AP|,即動(dòng)點(diǎn)P在線段AB上運(yùn)動(dòng),
所以動(dòng)點(diǎn)P的軌跡是線段.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.過(guò)點(diǎn)作斜率為的直線與雙曲線有兩個(gè)不同交點(diǎn).
⑴求的取值范圍?
⑵是否存在斜率,使得向量與雙曲線的一條漸近線的方向向量平行.若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分12分)
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)為動(dòng)點(diǎn),已知點(diǎn)A(,0),B(-,0),直線PA與PB的斜率之積為定值-
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若F(1,0),過(guò)點(diǎn)F的直線l交軌跡E于M、N兩點(diǎn),以MN為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)P到點(diǎn)M(-1,0)的距離與點(diǎn)P到點(diǎn)N(1,0)的距離之比為
(1)求點(diǎn)P到軌跡方程H;
(2)過(guò)點(diǎn)M做H的切線,求點(diǎn)N到的距離;
(3)求H關(guān)于直線對(duì)稱的曲線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

判斷方程所表示的曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.到兩互相垂直的異面直線的距離相等的點(diǎn),在過(guò)其中一條直線且垂直于另一條直線的平面內(nèi)的軌跡是            (   
A.直線B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)兩定點(diǎn)的坐標(biāo)分別A(-1,0),B(2,0),動(dòng)點(diǎn)M滿足條件,求動(dòng)點(diǎn)M的軌跡方程并指出軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切.
(1)求圓的方程;(2)圓軸相交于兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)使成等比數(shù)列,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面內(nèi)到兩定點(diǎn)的距離之和為4的點(diǎn)M的軌跡是      (    )
A.橢圓B.線段C.圓D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案