【題目】某商場營銷人員進行某商品的市場營銷調(diào)查時發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:
反饋點數(shù)t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當?shù)卦撋唐蜂N量(千件)與返還點數(shù)之間的相關(guān)關(guān)系.試預(yù)測若返回6個點時該商品每天的銷量;
(Ⅱ)若節(jié)日期間營銷部對商品進行新一輪調(diào)整.已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預(yù)期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點數(shù)預(yù)期值區(qū)間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(1)求這200位擬購買該商品的消費者對返點點數(shù)的心理預(yù)期值的樣本平均數(shù)及中位數(shù)的估計值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點值代替;估計值精確到0.1);
(2)將對返點點數(shù)的心理預(yù)期值在和的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調(diào)查,設(shè)抽出的3人中 “欲望緊縮型”消費者的人數(shù)為隨機變量,求的分布列及數(shù)學(xué)期望.
【答案】(Ⅰ)返回6個點時該商品每天銷量約為2百件;(Ⅱ)(1)均值的估計值為6, 中位數(shù)的估計值為5.7;(2)詳見解析.
【解析】
(Ⅰ)先由題中數(shù)據(jù)得到,根據(jù)回歸直線必過樣本中心,將代入,即可求出結(jié)果;
(Ⅱ)(1)根據(jù)頻數(shù)表中數(shù)據(jù),每組的中間值乘以該組的頻率,再求和,即可得出平均值;根據(jù)中位數(shù)兩側(cè)的頻率之和均為0.5,即可求出結(jié)果;
(2)先求出抽取6名消費者中“欲望緊縮型”消費者人數(shù)與“欲望膨脹型”消費者人數(shù),根據(jù)題意得到的可能取值,求出其對應(yīng)概率,即可得出分布列與數(shù)學(xué)期望.
解:(Ⅰ)由題意可得:,
因為線性回歸模型為,所以,解得;
故關(guān)于的線性回歸方程為,
當時,,即返回6個點時該商品每天銷量約為2百件.
(Ⅱ)(1)根據(jù)題意,這200位擬購買該商品的消費者對返回點數(shù)的心里預(yù)期值的平均值的估計值為:
,
中位數(shù)的估計值為.
(2)抽取6名消費者中“欲望緊縮型”消費者人數(shù)為,
“欲望膨脹型”消費者人數(shù)為.
由題意的可能取值為,
所以, ,
故隨機變量的分布列為
X | 1 | 2 | 3 |
P |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線
(1)求曲線的直角坐標方程;
(2)已知直線的參數(shù)方程為,(為參數(shù)),點為曲線上的動點,求點到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個極值點和,記過點,的直線的斜率為k,問:是否存在m,使得?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點處的切線方程為。我們將其結(jié)論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應(yīng)用。已知,直線與橢圓有且只有一個公共點.
(1)求的值;
(2)設(shè)為坐標原點,過橢圓上的兩點、分別作該橢圓的兩條切線、,且與交于點。當變化時,求面積的最大值;
(3)在(2)的條件下,經(jīng)過點作直線與該橢圓交于、兩點,在線段上存在點,使成立,試問:點是否在直線上,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獎飯店推出甲.乙兩種新菜品,為了了解兩種菜品的受歡迎程度,現(xiàn)統(tǒng)計一周內(nèi)兩種菜品每天的銷售量,得到下面的莖葉圖.下列說法中,不正確的是( )
A.甲菜品銷售量的眾數(shù)比乙菜品銷售量的眾數(shù)小
B.甲菜品銷售量的中位數(shù)比乙菜品銷售量的中位數(shù)小
C.甲菜品銷售量的平均值比乙菜品銷售量的平均值大
D.甲菜品銷售量的方差比乙菜品銷售量的方差大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左、右焦點分別為,離心率為,過焦點且垂直于軸的直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)點為橢圓上一動點,連接、,設(shè)的角平分線交橢圓的長軸于點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 當時,的最小值等于____;若對于定義域內(nèi)的任意,恒成立,則實數(shù)的取值范圍是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):
單價(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:
(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?
附:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)國家“陽光體育運動”的號召,某學(xué)校在了解到學(xué)生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調(diào)查該校學(xué)生每周平均體育運動時間的情況,從高一高二基礎(chǔ)年級與高三三個年級學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖。
(1)據(jù)圖估計該校學(xué)生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數(shù);
(2)規(guī)定每周平均體育運動時間不少于6小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運動時間不少于6小時,請完成下列列聯(lián)表,并判斷是否有99%的把握認為“該校學(xué)生的每周平均體育運動時間是否“優(yōu)秀”與年級有關(guān)”.
基礎(chǔ)年級 | 高三 | 合計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com