【題目】在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面EBD;
(Ⅱ)求二面角EBDP的余弦值.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)幾何法:連接,連接,根據(jù)線面平行的判定定理可先證明線線平行,即證明;向量法:以點(diǎn)D為原點(diǎn),DA為x軸,DC為y軸,DP為z軸建立直角坐標(biāo)系,求平面的法向量,若,說(shuō)明與法向量垂直,即與平面平行;
(Ⅱ)向量法求二面角的余弦值,即先求兩個(gè)平面的法向量,而平面的法向量就是,即求.
試題解析:解:(Ⅰ)法一:以點(diǎn)D為原點(diǎn),DA為x軸,DC為y軸,DP為z軸建立直角坐標(biāo)系,設(shè)正方形的邊長(zhǎng)為1,則
∴,.
設(shè)平面EBD的法向量為,
可求得,∴,∴∥平面EBD.
即PA∥平面EBD.
法二:連接AC,設(shè)AC∩BD=O,連接OE,則OE∥PA,∴PA∥平面EBD.
(Ⅱ)設(shè)平面PBD的法向量為.
∴,∴二面角E-BD-P的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三個(gè)頂點(diǎn)分別為是, , .
(Ⅰ)求邊上的高所在的直線方程;
(Ⅱ)求過(guò)點(diǎn)且在兩坐標(biāo)軸上的截距相等的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小波從街區(qū)開(kāi)始向右走,在每個(gè)十字路口都會(huì)遇到紅綠燈,要是遇到綠燈則小波繼續(xù)往前走,遇到紅燈就往回走,假設(shè)任意兩個(gè)十字路口的綠燈亮或紅燈亮都是相互獨(dú)立的,且綠燈亮的概率都是,紅燈亮的概率都是.
(1)求小波遇到4次綠燈后,處于街區(qū)的概率;
(2)若小波一共遇到了3次紅綠燈,設(shè)此時(shí)小波所處的街區(qū)與街區(qū)相距的街道數(shù)為(如小波若處在街區(qū)則相距零個(gè)街道,處在,街區(qū)都是相距2個(gè)街道),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓(xùn),特別組織了個(gè)專項(xiàng)的考試,成績(jī)統(tǒng)計(jì)如下:
第一項(xiàng) | 第二項(xiàng) | 第三項(xiàng) | 第四項(xiàng) | 第五項(xiàng) | |
甲的成績(jī) | |||||
乙的成績(jī) |
(1)根據(jù)有關(guān)統(tǒng)計(jì)知識(shí),回答問(wèn)題:若從甲、乙人中選出人參加新崗培訓(xùn),你認(rèn)為選誰(shuí)合適,請(qǐng)說(shuō)明理由;
(2)根據(jù)有關(guān)槪率知識(shí),解答以下問(wèn)題:
從甲、乙人的成績(jī)中各隨機(jī)抽取一個(gè),設(shè)抽到甲的成績(jī)?yōu)?/span>,抽到乙的成績(jī)?yōu)?/span>,用表示滿足條件的事件,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,四邊形為矩形,平面平面.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最小值;
(2)若存在兩個(gè)不同的實(shí)數(shù),使得,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,其中,.
(1)求的單調(diào)區(qū)間;
(2)若存在極值點(diǎn),且,其中,求證:;
(3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名學(xué)生每天騎車上學(xué),從他家里到學(xué)校的途中有6個(gè)交通崗,假設(shè)在每個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是.
(1)假設(shè)為這名學(xué)生在途中遇到紅燈的次數(shù),求的分布列;
(2)設(shè)為這名學(xué)生在首次停車前經(jīng)過(guò)的路口數(shù),求的分布列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
Ⅰ.請(qǐng)完成上面的列聯(lián)表;
Ⅱ.根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.
參考公式與臨界值表:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com