【題目】已知首項為﹣6的等差數(shù)列{an}的前7項和為0,等比數(shù)列{bn}滿足b3=a7 , |b3﹣b4|=6.
(1)求數(shù)列{bn}的通項公式;
(2)是否存在正整數(shù)k,使得數(shù)列{ }的前k項和大于 ?并說明理由.
【答案】
(1)解:設等差數(shù)列{an}的公差為d,前n項Sn,a1=﹣6,
由S7=0,即7a1+ ×d=0,解得:d=2,
∴an=a1+(n﹣1)d=﹣6+(n﹣1)×2=2n﹣8,
設等比數(shù)列{bn}的公比為q,則由b3=a7=6,由|b3﹣b4|=6,即,|6﹣b4|=6.
∴b4=12或b4=0,
又∵{bn}為等比數(shù)列,
∴b4=12
∴q=2,
∴bn=b3qn﹣3=6×2n﹣3=3×2n﹣2,
數(shù)列{bn}的通項公式bn=3×2n﹣2
(2)解: ,
數(shù)列{ }是以 為首項,以 為公比的等比數(shù)列,
數(shù)列{ }的前k項和Tk= = (1﹣ ),
∴Tk< ,又∵ < ,
∴不存在正整數(shù)k,使得數(shù)列{ }的前k項和大于
【解析】(1)由題意可知:7a1+ ×d=0,求得d=2,即可求得an=2n﹣8,則b3=a7=6,則|6﹣b4|=6.求得b4=12則q= =2,由等比數(shù)列的性質(zhì)可知:bn=b3qn﹣3 , 即可求得數(shù)列{bn}的通項公式;(2) ,數(shù)列{ }是以 為首項,以 為公比的等比數(shù)列,Tk= = (1﹣ ),則Tk< , < ,不存在正整數(shù)k,使得數(shù)列{ }的前k項和大于 .
【考點精析】通過靈活運用數(shù)列的前n項和和數(shù)列的通項公式,掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn , 已知a5=﹣3,S10=﹣40.
(1)求數(shù)列{an}的通項公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n , …項,按原來的順序排成一個新數(shù)列{bn},求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義在上的函數(shù)滿足,且是奇函數(shù),現(xiàn)給出下列4個結(jié)論:①是周期為4的周期函數(shù);
②的圖象關于點對稱;
③是偶函數(shù);
④的圖象經(jīng)過點,其中正確結(jié)論的序號是__________(請?zhí)钌纤姓_的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓O為△ABC的外接圓,過點C作圓O的切線交AB的延長線于點D,∠ADC的平分線交AC于點E,∠ACB的平分線交AD于點H.
(1)求證:CH⊥DE;
(2)若AE=2CE.證明:DC=2DB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左焦點為F,離心率為 .若經(jīng)過F和P(0,4)兩點的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若執(zhí)行右側(cè)的程序框圖,當輸入的x的值為4時,輸出的y的值為2,則空白判斷框中的條件可能為( 。
A.x>3
B.x>4
C.x≤4
D.x≤5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在(2x-3y)10的展開式中,求:
(1)各項的二項式系數(shù)的和;
(2)奇數(shù)項的二項式系數(shù)的和與偶數(shù)項的二項式系數(shù)的和;
(3)各項系數(shù)之和;
(4)奇數(shù)項系數(shù)的和與偶數(shù)項系數(shù)的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com