【題目】已知函數(shù), .
(I)當(dāng)a=2時(shí),求曲線y = 在點(diǎn)(0,f(0))處的切線方程;
(II)求函數(shù)在區(qū)間[0 , e -1]上的最小值.
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:(1)先根據(jù)導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點(diǎn)斜式求切線方程(2)先求導(dǎo)數(shù),再根據(jù)定義區(qū)間分類討論導(dǎo)函數(shù)符號(hào)變化規(guī)律:當(dāng)時(shí),導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù);當(dāng)時(shí),導(dǎo)數(shù)非正,函數(shù)為減函數(shù);當(dāng)時(shí),導(dǎo)數(shù)先負(fù)后正,函數(shù)先增后減,最后根據(jù)單調(diào)性確定最小值
試題解析:(I)f (x)的定義域?yàn)?/span>.
因?yàn)?/span>,a = 2,
所以, .
所以 函數(shù)f (x)在點(diǎn)處的切線方程是 .
(II)由題意可得 .
(1)當(dāng)時(shí), ,
所以在上為減函數(shù),
所以在區(qū)間上, .
(2) 當(dāng)時(shí), 令,則,
① 當(dāng),即時(shí),
對(duì)于, ,
所以f (x)在上為增函數(shù),
所以.
② 當(dāng),即時(shí),
對(duì)于, ,
所以f (x)在上為減函數(shù),
所以.
③ 當(dāng)即時(shí),
當(dāng)x變化時(shí), , 的變化情況如下表:
0 | |||||
- | 0 | + | |||
極小值 |
所以 .
綜上,
當(dāng)時(shí), ;
當(dāng)時(shí), ;
當(dāng)時(shí), .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
將上表中的頻率視為概率,回答下列問題:
(1)現(xiàn)從甲公司隨機(jī)抽取3名送餐員,求恰有2名送餐員送餐單數(shù)超過40的概率;
(2)(i)記乙公司送餐員日工資為X(單位:元),求X的數(shù)學(xué)期望;
(ii)某人擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日平均工資的角度考慮,他應(yīng)該選擇去哪家公司應(yīng)聘,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某大學(xué)社團(tuán)為調(diào)查大學(xué)生對(duì)于“中華詩詞”的喜好,在該校隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩詞”的時(shí)間,并整理得到如下頻率分布直方圖:
根據(jù)學(xué)生每天學(xué)習(xí)“中華詩詞”的時(shí)間,可以將學(xué)生對(duì)于“中華詩詞”的喜好程度分為三個(gè)等級(jí) :
學(xué)習(xí)時(shí)間 (分鐘/天) | |||
等級(jí) | 一般 | 愛好 | 癡迷 |
(Ⅰ) 求的值;
(Ⅱ) 從該大學(xué)的學(xué)生中隨機(jī)選出一人,試估計(jì)其“愛好”中華詩詞的概率;
(Ⅲ) 假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試估計(jì)樣本中40名學(xué)生每人每天學(xué)習(xí)“中華詩詞”的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求證:存在唯一的,使得曲線在點(diǎn)處的切線的斜率為;
(3)比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形中, , , ,等腰梯形中, , , ,且平面平面.
(1)求證: 平面;
(2)若與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個(gè)半圓,固定點(diǎn)為的中點(diǎn). 是由電腦控制可以上下滑動(dòng)的伸縮橫桿(橫桿面積可忽略不計(jì)),且滑動(dòng)過程中始終保持和平行.當(dāng)位于下方和上方時(shí),通風(fēng)窗的形狀均為矩形(陰影部分均不通風(fēng)).
(1)設(shè)與之間的距離為(且)米,試將通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);
(2)當(dāng)與之間的距離為多少米時(shí),通風(fēng)窗的通風(fēng)面積取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線 給出下列四個(gè)命題:
(1)曲線有兩條對(duì)稱軸,一個(gè)對(duì)稱中心
(2)曲線上的點(diǎn)到原點(diǎn)距離的最小值為1
(3)曲線的長(zhǎng)度滿足
(4)曲線所圍成圖形的面積 滿足
上述命題正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com