極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時(shí),求曲線Cl與C2公共點(diǎn)的直角坐標(biāo); 
(2)若,當(dāng)變化時(shí),設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
(1)(0,0)或(1,1)
(2),以為圓心,為半徑的圓,除去點(diǎn)(0,0)

試題分析:(1)根據(jù)題意,由于曲線Cl的極坐標(biāo)方程為,表示的為
曲線C2的參數(shù)方程為為參數(shù)))當(dāng)時(shí),直線方程為y=x,聯(lián)立方程組可知,交點(diǎn)坐標(biāo)為(0,0)或(1,1)
(2)由于,當(dāng)變化時(shí),設(shè)曲線C1與C2的公共點(diǎn)為A,B ,那么可知利用直角三角形的性質(zhì)可知AB中點(diǎn)M軌跡方程為,以為圓心,為半徑的圓,除去點(diǎn)(0,0)
點(diǎn)評(píng):主要是考查了參數(shù)方程以及直角坐標(biāo)方程的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)且不垂直于軸直線與橢圓相交于、兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線上一點(diǎn)軸的距離是,則點(diǎn)到該拋物線焦點(diǎn)的距離是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列關(guān)于圓錐曲線的命題:其中真命題的序號(hào)___________.(寫出所有真命題的序號(hào))。
① 設(shè)為兩個(gè)定點(diǎn),若,則動(dòng)點(diǎn)的軌跡為雙曲線;
② 設(shè)為兩個(gè)定點(diǎn),若動(dòng)點(diǎn)滿足,且,則的最大值為8;
③ 方程的兩根可分別作橢圓和雙曲線的離心率;
④ 雙曲線與橢圓有相同的焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點(diǎn),且OA⊥OB,若存在,求出該直線方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定點(diǎn),是圓上任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,線段的中垂線與直線相交于點(diǎn),則點(diǎn)的軌跡是
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,設(shè)點(diǎn)為圓上的任意一點(diǎn),點(diǎn)(2)  (),則線段長度的最小值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.若橢圓上的點(diǎn)到焦點(diǎn)的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)、,當(dāng)的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:圓過橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn):直線與圓相切 ,與橢圓相交于A,B兩點(diǎn)記 
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案