精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐P-ABCD的底面為直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點,△PAD為正三角形,M是棱PC上的一點(異于端點).

(1)若M為PC的中點,求證:PA∥平面BME;

(2)是否存在點M,使二面角MBED的大小為30°.若存在,求出點M的位置;若不存在,說明理由.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)連接ACBE于點F,根據平幾知識可得ABCE為平行四邊形,即得MFPA. 再根據線面平行判定定理得結論(2)先根據空間直角坐標系,再設立各點坐標,根據方程組解得平面法向量,根據向量數量積求向量夾角,最后根據二面角與向量夾角相等或互補關系列方程解得M坐標,即得點M的位置.

試題解析:(1)證明:如圖,連接ACBE于點F,連接CE.

由題意知BCAE,且BCAE,故四邊形ABCE為平行四邊形,∴FAC的中點,在△PAC中,又由MPC的中點,得MFPA.

MF平面BME,PA平面BME,∴PA∥平面BME.

(2)連接PE,則由題意知PE⊥平面ABCD.

故以E為坐標原點建立如圖所示空間直角坐標系Exyz,則

E(0,0,0),P(0,0,),

B(,0,0),C(,-1,0).

λ=(0<λ<1),

M(λ,-λ, (1-λ)).

=(λ,-λ, (1-λ)),=(,0,0).

取平面DBE的法向量n1=(0,0,1),設平面BME的法向量n2=(x,yz),

則由

y,得n2.

又由=cos30°,得λ,

M.故存在點M滿足要求,且M為棱PC上靠近端點C的四等分點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)判斷函數的奇偶性,并加以證明;

2)用定義證明上是減函數;

3)函數上是單調增函數還是單調減函數?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線為參數),曲線為參數),以坐標原點為極點, 軸的正半軸為極軸建立直角坐標系.

(1)求曲線的極坐標方程,直線的普通方程;

(2)把直線向左平移一個單位得到直線,設與曲線的交點為 , 為曲線上任意一點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數f(x)對任意實數x、y恒有f(x)f(y)f(xy),且當x0時,f(x)0,又f(1)=-.

(1)求證:f(x)為奇函數;

(2)求證:f(x)R上是減函數;

(3)f(x)[3,6]上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為F,F關于原點的對稱點為P,過F軸的垂線交拋物線于MN兩點,給出下列三個結論:

必為直角三角形;

②直線必與拋物線相切;

的面積為.其中正確的結論是___

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題正確的是( )

A. 是向量,不共線的充要條件

B. 在空間四邊形中,

C. 在棱長為1的正四面體中,

D. ,三點不共線,為平面外一點,若,則,四點共面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點在拋物線外,過點作拋物線的兩切線,設兩切點分別為,記線段的中點為.

(Ⅰ)求切線的方程;

(Ⅱ)證明:線段的中點在拋物線上;

(Ⅲ)設點為圓上的點,當取最大值時,求點的縱坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,其左焦點與拋物線的焦點重合.

(1)求橢圓的方程;

(2)過動點的直線交軸于點,交橢圓于點在第一象限,,過點軸的垂線交橢圓于點,連接并延長交橢圓于另一點.設直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某教育培訓中心共有25名教師,他們全部在校外住宿.為完全起見,學校派專車接送教師們上下班.這個接送任務承包給了司機王師傅,正常情況下王師傅用34座的大客車接送教師.由于每次乘車人數不盡相同,為了解教師們的乘車情況,王師傅連續(xù)記錄了100次的乘車人數,統(tǒng)計結果如下:

乘車人數

15

16

17

18

19

20

21

22

23

24

25

頻數

2

4

4

10

16

20

16

12

8

6

2

以這100次記錄的各乘車人數的頻率作為各乘車人數的概率.

(Ⅰ)若隨機抽查兩次教師們的乘車情況,求這兩次中至少有一次乘車人數超過18的概率;

(Ⅱ)有一次,王師傅的大客車出現了故障,于是王師傅準備租一輛小客車來臨時送一次需要乘車的教師.可供選擇的小客車只有20座的型車和22座的型車兩種, 型車一次租金為80元, 型車一次租金為90元.若本次乘車教師的人數超過了所租小客車的座位數,王師傅還要付給多出的人每人20元錢供他們乘出租車.以王師傅本次付出的總費用的期望值為依據,判斷王師傅租哪種車較合算?

查看答案和解析>>

同步練習冊答案