若直線y=x與雙曲線=1(a>0,b>0)的交點在實軸上的射影恰好為雙曲線的焦點,則雙曲線的離心率為(    )

A.                 B.2              C.                 D.4

B

解析:直線x=c與雙曲線的一個交點為(c,),故=,即2c2-3ac-2a2=0,

∴c=2a,e=2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的焦點為F1(-c,0)、F2(c,0)(c>0),焦點F2到漸近線的距離為
3
,兩條準線之間的距離為1.
(1)求此雙曲線的方程;
(2)若直線y=x+2與雙曲線分別相交于A、B兩點,求線段AB的長;
(3)過雙曲線焦點F2且與(2)中AB平行的直線與雙曲線分別相交于C、D兩點,若
AB
+
AD
=
AC
,求
1
2
(
OA
OD
)tan<
OA
,
OD
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線y= x與雙曲線(a>0,b>0)的交點在實軸上的射影恰好為雙曲線的焦點,則雙曲線的離心率為

A.                   B.2                    C.2                 D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為x2-y2=4,橢圓E以雙曲線C的頂點為焦點,且橢圓右頂點A到雙曲線C的漸近線距離為3.

(1)求橢圓E的方程;

(2)若直線y=x與橢圓E交于M、N兩點(M點在第一象限),P、Q是橢圓上不同于M的相異兩點,并且∠PMQ的平分線垂直于x軸.試求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為x2-y2=4.橢圓E以雙曲線C的頂點為焦點,且其右頂點A到雙曲線C的漸近線距離為.

(1)求橢圓E的方程;

(2)若直線y=x與橢圓E交于M、N兩點(M點在第一象限),P、Q是橢圓上不同于M的相異兩點,點O為坐標原點,并且滿足(+)·(-)=0.試求直線PQ的斜率.

查看答案和解析>>

同步練習冊答案