精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱中, 、分別為、的中點, .

(1)求證:平面平面;

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析:(1)要證面面垂直,先證線面垂直, 平面,再由面面垂直的判定得到面面垂直;(2)建系得到面的法向量和直線的方向向量,根據公式得到線面角的正弦值。.

解析:

(1)在直三棱柱中

平面, 平面,

平面

又∵平面

∴平面平面.

(2)由(1)可知

點為坐標原點, 軸正方向, 軸正方向, 軸正方向,建立坐標系.設

, , , , ,

直線的方向向量,平面的法向量

可知

,

設平面的法向量

設平面的法向量

記二面角的平面角為

二面角的平面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 ,其中 為自然對數的底數).

1)討論函數的單調性,并寫出相應的單調區(qū)間;

2)設,若函數對任意都成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中, , 是線段的中點,且 平面

(Ⅰ)求證:平面平面;

(Ⅱ)求證: 平面

(Ⅲ)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經過點

1求橢圓的方程;

2若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學調查了某班全部名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)

(1)能否由的把握認為參加書法社團和參加演講社團有關?

(附:

時,有的把握說事件有關;當,認為事件是無關的)

(2)已知既參加書法社團又參加演講社團的名同學中,有名男同學, , , , 名女同學, .現從這名男同學和名女同學中各隨機選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018百校聯盟TOP20一月聯考函數處的切線斜率為

I)討論函數的單調性;

II)設, ,對任意的,存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱中, 平面,底面為梯形, , , ,點, 分別為 的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線段上是否存在點,使與平面所成角的正弦值是,若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了凈化空氣,某科研單位根據實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數關系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數據: 取1.4).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

同步練習冊答案