【題目】命題“x∈Z,使x2+2x+m≤0”的否定是( )

A. x∈Z,都有x2+2x+m≤0

B. x∈Z,使x2+2x+m0

C. x∈Z,都有x2+2x+m0

D. 不存在x∈Z,使x2+2x+m0

【答案】C

【解析】

試題將存在換為“”同時(shí)將結(jié)論“x2+2x+m≤0”換為“x2+2x+m0”

解:命題“x∈Z,使x2+2x+m≤0”的否定是:

x∈Z,都有x2+2x+m0,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某方便面生產(chǎn)線(xiàn)上每隔15分鐘抽取一包進(jìn)行檢驗(yàn),該抽樣方法為,從某中學(xué)的40名數(shù)學(xué)愛(ài)好者中抽取5人了解學(xué)習(xí)負(fù)擔(dān)情況,該抽樣方法為,那么分別為

A. 系統(tǒng)抽樣,分層抽樣 B. 系統(tǒng)抽樣, ②簡(jiǎn)單隨機(jī)抽樣

C. 分層抽樣,②系統(tǒng)抽樣 D. 分層抽樣,②簡(jiǎn)單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α,β為兩個(gè)不重合的平面,m,n為兩條不重合的直線(xiàn),給出下列四個(gè)命題:
①若m⊥n,m⊥α,nα則n∥α;
②若α⊥β,α∩β=m,nα,n⊥m,則n⊥β;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若nα,mβ,α與β相交且不垂直,則n與m不垂直.
其中所有真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,an+1=2an對(duì)nN*成立,且a3=12,則a1=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“x+y=3”是“x=1且y=2”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程4x﹣k2x+k+3=0,只有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列結(jié)論:

一條直線(xiàn)垂直于一個(gè)平面,則這條直線(xiàn)就和這個(gè)平面內(nèi)的任何直線(xiàn)垂直;

過(guò)平面外一點(diǎn)有只有一個(gè)平面和這個(gè)平面垂直;

過(guò)直線(xiàn)外一點(diǎn)有且只有一個(gè)平面和這條直線(xiàn)平行;

如果兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的任一直線(xiàn)平行于另一個(gè)平面.

其中正確的是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1:x2+y2﹣6x﹣7=0與圓C2:x2+y2﹣6y﹣27=0相交于A、B兩點(diǎn),則線(xiàn)段AB的中垂線(xiàn)方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】原命題:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”的逆命題、否命題、逆否命題中真命題有( )個(gè).
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案