【題目】某工廠為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組檢測(cè)數(shù)據(jù))如下表所示:

試銷價(jià)格

(元)

4

5

6

7

9

產(chǎn)品銷量

(件)

84

83

80

75

68

已知變量具有線性負(fù)相關(guān)關(guān)系,且,,現(xiàn)有甲、乙、丙三位同學(xué)通過(guò)計(jì)算求得其回歸直線方程分別為:甲,乙,丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的( ).

1)試判斷誰(shuí)的計(jì)算結(jié)果正確?并求出的值;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò)1,則該檢測(cè)數(shù)據(jù)是理想數(shù)據(jù),現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取2個(gè),理想數(shù)據(jù)的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】1;(2)見(jiàn)解析.

【解析】

試題分析:(1)已知,,結(jié)合表格數(shù)據(jù)可得到 的值,并能求得. 具有線性負(fù)相關(guān)關(guān)系可知甲同學(xué)的不對(duì),將代入驗(yàn)證乙同學(xué)的是否正確;

2)分別求出有回歸方程求得 值,與實(shí)際的 相比較,判斷是否為理想數(shù)據(jù),并求得 的取值,分別求得其概率,寫出分布列和數(shù)學(xué)期望.

試題解析:

1變量具有線性負(fù)相關(guān)關(guān)系,又

滿足方程,故乙是正確的. ------4

. -----6

2)由計(jì)算可得理想數(shù)據(jù)個(gè),即.------8

0

1

2

-----11

故所求 ------12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的值域;

(2)設(shè)函數(shù),若對(duì)任意,總存在,使得

立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自點(diǎn)A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(4,-3)B(2,-1)和直線l4x3y20

1求在直角坐標(biāo)平面內(nèi)滿足|PA||PB|的點(diǎn)P的方程;

2求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA||PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中裝有編號(hào)為的3個(gè)黑球和編號(hào)為的2個(gè)紅球,從中任意摸出2個(gè)球.

(Ⅰ)寫出所有不同的結(jié)果;

(Ⅱ)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率;

(Ⅲ)求至少摸出1個(gè)紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最小值為,求的值;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

當(dāng)時(shí),求函數(shù)處的切線方程;

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在高為2的梯形中, , , ,過(guò)、分別作 ,垂足分別為。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。

(1)若,證明:

(2)若,證明: ;

(3)在(1),(2)的條件下,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為Sn,點(diǎn)在直線上,數(shù)列為等差數(shù)列,且,前9項(xiàng)和為153.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè),數(shù)列的前n項(xiàng)和為,求使不等式對(duì)一切的都成立的最大整數(shù)k.

查看答案和解析>>

同步練習(xí)冊(cè)答案