科目:高中數(shù)學 來源:2013屆江蘇省高二4月月考文科數(shù)學試卷(解析版) 題型:解答題
在函數(shù)的圖象上有、、三點,橫坐標分別為其中.
⑴求的面積的表達式;
⑵求的值域.
【解析】由題意利用分割可先表示三角形ABC的面積,然后應用對數(shù)運算性質及二次函數(shù)的性質求解函數(shù)的最大值,屬于知識的簡單綜合.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇南通市高一下學期期中數(shù)學試卷(解析版) 題型:解答題
如圖是單位圓上的點,分別是圓與軸的兩交點,為正三角形.
(1)若點坐標為,求的值;
(2)若,四邊形的周長為,試將表示成的函數(shù),并求出的最大值.
【解析】第一問利用設
∵ A點坐標為∴ ,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴ ,
∴ 當時,即 當 時 , y有最大值5. .
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三第五次階段考試理科數(shù)學試卷(解析版) 題型:解答題
汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(,為正常數(shù))需打建一個樁位,每個樁位需花費萬元(樁位視為一點且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計地板和天花板的情況下,當為何值時,所需總費用最少?
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。先求需打個樁位.再求解墻面所需費用為:,最后表示總費用,利用導數(shù)判定單調性,求解最值。
解:由題意可知,需打個樁位. …………………2分
墻面所需費用為:,……4分
∴所需總費用()…7分
令,則
當時,;當時,.
∴當時,取極小值為.而在內極值點唯一,所以.∴當時,(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
設函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程。………………4分
(2)當
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調遞增。∴滿足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com