精英家教網 > 高中數學 > 題目詳情

已知函數數學公式
(1)是否存在實數a使得f(x)為奇函數?若存在,求出a的值并證明;若不存在,說明理由;
(2)在(1)的條件下判斷f(x)的單調性,并用定義加以證明.

解:(1)存在a使得函數f(x)為奇函數.
證明:假設存在這樣的a的值,∵函數f(x)的定義域為實數集R,∴f(0)=0,∴,解得a=1.
當a=1時,f(x)=
==-f(x),
∴a=1時,函數f(x)為奇函數.
(2)在(1)的條件下,f(x)===在實數集R上單調遞增.
證明:?x1<x2,
則f(x1)-f(x2)==
=,
∵x1<x2,∴,
∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴函數f(x)在R上單調遞增.
分析:(1)利用函數的奇偶性即可判斷出;
(2)先判斷函數的單調性,再利用函數的單調性的定義即可證明其單調性.
點評:熟練掌握函數的奇偶性和單調性是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數。

(1)是否存在實數,使得處取極值?試證明你的結論;

(2)若上是減函數,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:2015屆浙江省高一12月月考數學試卷(解析版) 題型:解答題

已知函數。

(1)是否存在實數,使是奇函數?若存在,求出的值;若不存在,給出證明。

(2)當時,恒成立,求實數的取值范圍。

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數數學公式
(1)是否存在a<b且a,b∈[1,+∞),使得當函數f(x)的定義域為[a,b]時,值域為數學公式?若存在,求出a,b的值,若不存在,說明理由;
(2)若存在實數a,b(a<b),使得函數f(x)的定義域為[a,b],值域為[ma,mb](m≠0),求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2005-2006學年湖南省百校大聯考高三(上)第二次考試數學試卷(理科)(解析版) 題型:解答題

已知函數
(1)是否存在a<b且a,b∈[1,+∞),使得當函數f(x)的定義域為[a,b]時,值域為?若存在,求出a,b的值,若不存在,說明理由;
(2)若存在實數a,b(a<b),使得函數f(x)的定義域為[a,b],值域為[ma,mb](m≠0),求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案