【題目】如圖,三棱錐A﹣BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A﹣MBC的體積.
【答案】
(1)證明:∵AB⊥平面BCD,CD平面BCD,
∴AB⊥CD,
∵CD⊥BD,AB∩BD=B,
∴CD⊥平面ABD;
(2)解:∵AB⊥平面BCD,BD平面BCD,
∴AB⊥BD.
∵AB=BD=1,
∴S△ABD= ,
∵M為AD中點,
∴S△ABM= S△ABD= ,
∵CD⊥平面ABD,
∴VA﹣MBC=VC﹣ABM= S△ABMCD=
【解析】(1)證明:CD⊥平面ABD,只需證明AB⊥CD;(2)利用轉(zhuǎn)換底面,VA﹣MBC=VC﹣ABM= S△ABMCD,即可求出三棱錐A﹣MBC的體積.
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有8名奧運會志愿者,其中志愿者A1 , A2 , A3通曉日語,B1 , B2 , B3通曉俄語,C1 , C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求A1被選中的概率;
(2)求B1和C1不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,角A,B,C所對的邊分別為a,b,c,且asin Acos C+csin AcosA= c
(1)若c=1,sin C= ,求△ABC的面積S
(2)若D 是AC的中點且cosB= ,BD= ,求△ABC的最短邊的邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足 .
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,且函數(shù)y=f(x)的圖象關(guān)于直線x=ω對稱,則ω的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(2x+1),g(x)=loga(1﹣2x)(a>0且a≠1)
(1)求函數(shù)F(x)=f(x)﹣g(x)的定義域;
(2)判斷F(x)=f(x)﹣g(x)的奇偶性,并說明理由;
(3)確定x為何值時,有f(x)﹣g(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2, ,P是BC的中點. (Ⅰ)求證:DP∥平面EAB;
(Ⅱ)求平面EBD與平面ABC所成銳二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖,圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃,下面敘述不正確的是( )
A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com