【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖,圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃,下面敘述不正確的是(
A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個

【答案】D
【解析】解:A.由雷達圖知各月的平均最低氣溫都在0℃以上,正確 B.七月的平均溫差大約在10°左右,一月的平均溫差在5°左右,故七月的平均溫差比一月的平均溫差大,正確
C.三月和十一月的平均最高氣溫基本相同,都為10°,正確
D.平均最高氣溫高于20℃的月份有7,8兩個月,故D錯誤,
故選:D
根據(jù)平均最高氣溫和平均最低氣溫的雷達圖進行推理判斷即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐A﹣BCD中,AB⊥平面BCD,CD⊥BD.

(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A﹣MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列4個命題: ①“若x+y=0,則x,y互為相反數(shù)”的逆否命題;
②“若a>b,則a2>b2”的逆命題;
③“若x≤﹣3,則x2﹣x﹣6>0”的否命題;
④“若ab是無理數(shù),則a,b是無理數(shù)”的逆命題.
其中真命題的個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè) ,c=f(0.20.6),則a,b,c的大小關(guān)系是(
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,D1C的中點,AD=AA1 , AB=2AD. (Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1+(﹣1)nan=2n,其前n項和為Sn , 則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 a=2csinA
(1)確定角C的大小;
(2)若c= ,且△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓具有性質(zhì):若M,N是橢圓C: =1(a>b>0且a,b為常數(shù))上關(guān)于y軸對稱的兩點,P是橢圓上的左頂點,且直線PM,PN的斜率都存在(記為kPM , kPN),則kPMkPN= .類比上述性質(zhì),可以得到雙曲線的一個性質(zhì),并根據(jù)這個性質(zhì)得:若M,N是雙曲線C: =1(a>0,b>0)上關(guān)于y軸對稱的兩點,P是雙曲線C的左頂點,直線PM,PN的斜率都存在(記為kPM , kPN),雙曲線的離心率e= ,則kPMkPN等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1. (Ⅰ)若3是關(guān)于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(Ⅱ)當(dāng)0<a<1且t=1時,解不等式f(x)≤g(x);
(Ⅲ)若函數(shù)F(x)=afx+tx2﹣2t+1在區(qū)間(﹣1,3]上有零點,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案