【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是:(是參數(shù)).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)若直線與曲線相交于兩點(diǎn),且,試求實(shí)數(shù)值;
(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.
【答案】(1)或;(2).
【解析】
(1)把直線、曲線方程化為直角坐標(biāo)方程后根據(jù)圓心到直線的距離和半徑的關(guān)系建立方程即可.(2)利用圓的參數(shù)方程,根據(jù)點(diǎn)到直線的距離公式和三角函數(shù)的知識求解.
解析:(1)曲線的極坐標(biāo)方程是化為直角坐標(biāo)方程為:,直線的直角坐標(biāo)方程為:.
所以圓心到直線的距離(弦心距),
圓心到直線的距離為:,
所以
所以或,
(2)曲線C的方程可化為,其參數(shù)方程為(為參數(shù))
因?yàn)?/span>為曲線C上任意一點(diǎn),
所以的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)對函數(shù)進(jìn)行研究后,得出以下結(jié)論,其中正確的有( )
A.函數(shù)的圖象關(guān)于原點(diǎn)對稱
B.對定義域中的任意實(shí)數(shù)的值,恒有成立
C.函數(shù)的圖象與軸有無窮多個(gè)交點(diǎn),且每相鄰兩交點(diǎn)間距離相等
D.對任意常數(shù),存在常數(shù),使函數(shù)在上單調(diào)遞減,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)在軸上,頂點(diǎn)在坐標(biāo)原點(diǎn),在、上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表格中:
(1)求、的標(biāo)準(zhǔn)方程;
(2)已知定點(diǎn),為拋物線上的一動點(diǎn),過點(diǎn)作拋物線的切線交橢圓于、兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體棱長為,如圖,為上的動點(diǎn),平面.下面說法正確的是( )
A.直線與平面所成角的正弦值范圍為
B.點(diǎn)與點(diǎn)重合時(shí),平面截正方體所得的截面,其面積越大,周長就越大
C.點(diǎn)為的中點(diǎn)時(shí),若平面經(jīng)過點(diǎn),則平面截正方體所得截面圖形是等腰梯形
D.己知為中點(diǎn),當(dāng)的和最小時(shí),為的中點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若曲線與曲線在公共點(diǎn)處有共同的切線,求實(shí)數(shù)的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點(diǎn)?如果有,求出該零點(diǎn);若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是坐標(biāo)系的原點(diǎn),是拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),弦的中點(diǎn)為,的重心為.
(1)求動點(diǎn)的軌跡方程;
(2)設(shè)(1)中的軌跡與軸的交點(diǎn)為,當(dāng)直線與軸相交時(shí),令交點(diǎn)為,求四邊形的面積最小時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù),,,記函數(shù)和的零點(diǎn)個(gè)數(shù)分別是,,則( )
A.若,則B.若,則
C.若,則D.若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面,B,,,且,,且,則下列敘述錯誤的是( )
A.直線與是異面直線
B.直線在上的射影可能與平行
C.過有且只有一個(gè)平面與平行
D.過有且只有一個(gè)平面與垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo)系,過點(diǎn)作傾斜角為()的直線交曲線于、兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;
(2)過點(diǎn)的另一條直線與垂直,且與曲線交于,兩點(diǎn),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com