在△ABC中,已知角A,B,C所對(duì)的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線(xiàn)l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關(guān)系是   
【答案】分析:由對(duì)數(shù)的運(yùn)算性質(zhì)可知sin2B=sinA•sinC,再利用比例關(guān)系=即可判斷兩直線(xiàn)的位置關(guān)系.
解答:解:依題意,sin2B=sinA•sinC,
=,即兩直線(xiàn)方程中x的系數(shù)之比與y的系數(shù)之比相等,
∴兩條直線(xiàn)l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.
故答案為:平行或重合.
點(diǎn)評(píng):本題考查直線(xiàn)的一般式方程與直線(xiàn)的性質(zhì),著重考查兩直線(xiàn)方程中x的系數(shù)之比與y的系數(shù)之比的關(guān)系的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C的對(duì)邊分別為a,b,c,若A,B,C成等差數(shù)列,且b=
3
,c=
2
,則B=
 
,A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A為銳角,角A、B、C的對(duì)邊分別為a、b、c,sinA=
2
2
3

(1)求tan2
B+C
2
+sin2
A
2
的值;
(2)若a=2
2
,S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A、B、C對(duì)應(yīng)的三邊分別為a,b,c,滿(mǎn)足(a+b+c)(a+b-c)=3ab,則角C的大小等于
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C滿(mǎn)足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的兩根,若△ABC的面積為3+
3
,試求△ABC的三邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C的對(duì)邊分別是a,b,c,且a2+b2-c2=
3
ab

(1)求角C的大;
(2)如果0<A≤
3
,m=2cos2
A
2
-sinB-1
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案