【題目】設平面點集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},則(A∪B)∩C所表示的平面圖形的面積是
【答案】π
【解析】解:對于集合A:{(x,y)|(x﹣1)2+(y﹣1)2≤1},
表示的是:以(1,1)為圓心,以1為半徑的圓及其內部,
如右圖,第一象限的圓;
對于集合B:{(x,y)|(x+1)2+(y+1)2≤1},
表示的是:以(﹣1,﹣1)為圓心,以1為半徑的圓及其內部,
如右圖,第三象限的圓;
而集合C:{(x,y)|y﹣≥0},
表示的就是:雙曲線y=上方的部分,
右圖陰影就是(A∪B)∩C所表示的平面圖形,
根據圖形的對稱性可知:
其中,兩塊綠色的都為四分之一圓,兩塊紅色的可以拼成四分之一圓,兩塊藍色的也可以拼四分之一圓,
所以,全部陰影部分的面積為一個整圓的面積,其值為:π,
故答案為:π.
分別確定集合A,B,C所表示的平面區(qū)域,再畫出應用的圖形,根據圖形的對稱性并運用割補法,求陰影部分的面積.
科目:高中數學 來源: 題型:
【題目】函數f′(x)是奇函數f(x)(x∈R)的導函數,f(1)=0,當x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長交的延長線與點Q,連接QE交PA于點K,設QA=x,
由,得,則,所以.
取的中點為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結束】
17
【題目】在極坐標系中,極點為,已知曲線: 與曲線: 交于不同的兩點, .
(1)求的值;
(2)求過點且與直線平行的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對一切實數x均成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知值域為[﹣1,+∞)的二次函數滿足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的兩個實根x1 , x2滿足|x1﹣x2|=2.
(1)求f(x)的表達式;
(2)函數g(x)=f(x)﹣kx在區(qū)間[﹣1,2]內的最大值為f(2),最小值為f(﹣1),求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面關于這四個函數奇偶性的判斷正確的是( 。
A.都是偶函數
B.一個奇函數,一個偶函數,兩個非奇非偶函數
C.一個奇函數,兩個偶函數,一個非奇非偶函數
D.一個奇函數,三個偶函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1和C2的參數方程分別是 (t是參數)和 (φ為參數).以原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1的普通方程和曲線C2的極坐標方程;
(2)射線OM:θ=α與曲線C1的交點為O,P,與曲線C2的交點為O,Q,求|OP|·|OQ|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱AB的中點為P,若光線從點P出發(fā),依次經三個側面BCC1B1 , DCC1D1 , ADD1A1反射后,落到側面ABB1A1(不包括邊界),則入射光線PQ與側面BCC1B1所成角的正切值的范圍是( )
A.( , )
B.( ,4)
C.( , )
D.( , )
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com