精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓過點P21).

1)求橢圓C的方程,并求其離心率;

2)過點Px軸的垂線l,設點A為第四象限內一點且在橢圓C上(點A不在直線l上),點A關于l的對稱點為A',直線A'PC交于另一點B.設O為原點,判斷直線AB與直線OP的位置關系,并說明理由.

【答案】(1)見解析;(2)見解析

【解析】

(1)將點代入橢圓方程,求出,結合離心率公式即可求得橢圓的離心率;(2)設直線,,設點的坐標為,,分別求出,根據斜率公式,以及兩直線的位置關系與斜率的關系即可得結果.

1)由橢圓方程橢圓過點P2,1),可得

所以,

所以橢圓C的方程為+=1,離心率e==

2)直線AB與直線OP平行.證明如下:

設直線,,

設點A的坐標為(x1y1),Bx2,y2),

,

,∴

同理,所以,

,

因為A在第四象限,所以,且A不在直線OP上.

,故,

所以直線與直線平行.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4—4:坐標系與參數方程

已知曲線的參數方程是是參數, ),直線的參數方程是是參數),曲線與直線有一個公共點在軸上,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系

(1)求曲線的極坐標方程;

(2)若點,在曲線上,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前n項和, 是等差數列,且.

)求數列的通項公式;

)令.求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓的離心率為,其左頂點在圓.

(1)求橢圓的方程;

(2)直線與橢圓的另一個交點為,與圓的另一個交點為.

時,求直線的斜率;

是否存在,使?若存在,求出直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數滿足:(1);(2);(3)時,.大小關系

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間;

(2)當時,函數的圖象恒不在軸的上方,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地有三家工廠,分別位于矩形ABCD的頂點A,B,及CD的中點P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點O處建造一個污水處理廠,并鋪設排污管道AO,BO,OP,設排污管道的總長為ykm

I)按下列要求寫出函數關系式:

,將表示成的函數關系式;

,將表示成的函數關系式.

)請你選用(I)中的一個函數關系式,確定污水處理廠的位置,使三條排水管道總長度最短.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知焦點在x軸上,離心率為的橢圓E的左頂點為A,點A到右準線的距離為6

1)求橢圓E的標準方程;

2)過點A且斜率為的直線與橢圓E交于點B,過點B與右焦點F的直線交橢圓EM點,求M點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的標準方程;

(2)若,為橢圓上不同的兩點,且以為直徑的圓過坐標原點.是否存在定圓與動直線相切?若存在,求出該圓的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案