已知拋物線C:y2=2px(p>0)上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過(guò)焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個(gè)數(shù)學(xué)問(wèn)題的正確結(jié)論后,將其作為條件之一,提出與原來(lái)問(wèn)題有關(guān)的新問(wèn)題,我們把它稱為原來(lái)問(wèn)題的一個(gè)“逆向”問(wèn)題.
例如,原來(lái)問(wèn)題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問(wèn)題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為
16
3
,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過(guò)點(diǎn)A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過(guò)焦點(diǎn)F.
試給出上述命題的“逆向”問(wèn)題,并解答你所給出的“逆向”問(wèn)題.
(1)由已知及拋物線的定義可得:
p
2
=1,即p=2,所以拋物線C的方程為:y2=4x(4分)
(2)設(shè)N(
t2
4
,-t)
(t>0),則M(t2,2t),F(xiàn)(1,0).
因?yàn)镸、F、N共線,則有kFM=kNF,(6分)
所以
-t
1
4
t2-1
=
2t
t2-1
,解得t=
2
,(8分)
所以k=
2
2
2-1
=2
2
,(10分)
因而,直線MN的方程是y=2
2
(x-1)
.(11分)
(3)“逆向問(wèn)題”一:
①已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交拋物線C于P、Q兩點(diǎn),
設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)A(-
p
2
,0)
.(13分)
證明:設(shè)過(guò)F的直線為y=k(x-
p
2
),P(x1,y1),Q(x2,y2),則R(x1,-y1
y2=4x
y=k(x-
p
2
)
k2x2-(pk2+4)x+
1
4
p2k2=0
,
所以x1x2=
p2
4
,(14分)
kRA=
-y1
x1+
p
2
=-
k(x1-
p
2
)
x1+
p
2
,(15分)
kQA=
k(x2-
p
2
)
x2+
p
2
=
k(x1x2-
p
2
x1)
x1x2+
p
2
x1
=-
k(x1-
p
2
)
x1+
p
2
=kRA,(16分)
所以直線RQ必過(guò)焦點(diǎn)A.(17分)
②過(guò)點(diǎn)A(-
p
2
,0)
的直線交拋物線C于P、Q兩點(diǎn),F(xiàn)P與拋物線交于另一點(diǎn)R,則RQ垂直于x軸.
③已知拋物線C:y2=2px(p>0),過(guò)點(diǎn)B(m,0)(m>0)的直線交拋物線C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)A(-m,0).
“逆向問(wèn)題”二:已知橢圓C:
x2
a2
+
y2
b2
=1
的焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),
過(guò)F2的直線交橢圓C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)A(
a2
c
,0)

“逆向問(wèn)題”三:已知雙曲線C:
x2
a2
-
y2
b2
=1
的焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),
過(guò)F2的直線交雙曲線C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)A(
a2
c
,0)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動(dòng)點(diǎn),過(guò)A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過(guò)點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過(guò)M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問(wèn)是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過(guò)C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案