(本小題滿分12分)如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱⊥BD,點(diǎn)F為的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點(diǎn),若EG//面ABCD.
(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知:如圖,在四棱錐中,四邊形為正方形,,且,為中點(diǎn).
(1)證明://平面;
(2)證明:平面平面;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,
(1)線段的中點(diǎn)為,線段的中點(diǎn)為,求證:;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知直三棱柱中,, ,若是中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線和所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點(diǎn)的等腰直角三角形,底面為直角梯形,,∥,⊥,為上一點(diǎn),且.
(Ⅰ)求證⊥;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)三棱錐中,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)若,且異面直線與的夾角為時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,,,是的中點(diǎn).
(1)求證:平行平面;
(2)求二面角的余弦值;
(3)試問(wèn)線段上是否存在點(diǎn),使與成角?若存在,確定點(diǎn)位置,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com