【題目】某小朋友按如下規(guī)則練習(xí)數(shù)數(shù),大拇指,食指,中指,無名指,小指,無名指,中指,食指,大拇指,食指,,一直數(shù)到時,對應(yīng)的指頭是( )

A. 小指 B. 中指 C. 食指 D. 無名指

【答案】C

【解析】分析:由圖形中對應(yīng)的數(shù)分別求出大拇指、中指和小拇指對應(yīng)數(shù)的通項,代入2018求解n的值,滿足n為整數(shù)的即是2018對應(yīng)的指頭.

詳解:由圖中數(shù)字可知,大拇指對應(yīng)的數(shù)分別為1,9,17,…,

大拇指對應(yīng)的數(shù)構(gòu)成以1為首項,以8為公差的等差數(shù)列,

則通項公式為:1+8(n﹣1)=8n﹣7,令8n﹣7=2018,得n=,n不是整數(shù),不合題意;

食指對應(yīng)的數(shù)構(gòu)成以2為首項,以8為公差的等差數(shù)列,

則通項公式為:2+8(n﹣1)=8n-6;令8n-6=2018,得n=,n是整數(shù),符合題意;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , ,實數(shù) , 滿足 ,若 , ,使得 成立,則 的最大值為( )
A.4
B.
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.

(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)

運行
次數(shù)n

輸出y的值
為1的頻數(shù)

輸出y的值
為2的頻數(shù)

輸出y的值
為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計表(部分)

運行
次數(shù)n

輸出y的值
為1的頻數(shù)

輸出y的值
為2的頻數(shù)

輸出y的值
為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當(dāng)n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編寫程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 (a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標(biāo)原點.
(1)求 的值;
(2)若橢圓的離心率e滿足 ≤e≤ ,求橢圓長軸的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分設(shè)各項均為正數(shù)的等比數(shù)列,

1求數(shù)列的通項公式;

2,求證: ;

3是否存在正整數(shù),使得對任意正整數(shù)均成立?若存在,求出的最大值若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的兩條相鄰對稱軸間的距離為 ,把f(x)的圖象向右平移 個單位得到函數(shù)g(x)的圖象,且g(x)為偶函數(shù),則f(x)的單調(diào)遞增區(qū)間為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x2﹣m,g(x)=3ex﹣6(1﹣m)x﹣3(m∈R,e為自然對數(shù)底數(shù)).
(1)試討論函數(shù)f(x)的零點的個數(shù);
(2)證明:當(dāng)m>0,且x>0時,總有g(shù)(x)>f'(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|log2x>2}, ,則下列結(jié)論成立的是(
A.A∩B=A
B.(RA)∩B=A
C.A∩(RB)=A
D.(RA)∩(RB)=A

查看答案和解析>>

同步練習(xí)冊答案