【題目】定義在R上的函數(shù)fx)滿足:如果對任意的x1x2R,都有f,則稱函數(shù)fx)是R上的凹函數(shù),已知二次函數(shù)fx)=ax2+xaR,a≠0

1)當(dāng)a1,x[2,2]時(shí),求函數(shù)fx)的值域;

2)當(dāng)a1時(shí),試判斷函數(shù)fx)是否為凹函數(shù),并說明理由;

3)如果函數(shù)fx)對任意的x[0,1]時(shí),都有|fx|≤1,試求實(shí)數(shù)a的范圍.

【答案】1;(2)凹函數(shù);見解析(3[2,0]

【解析】

(1)根據(jù)二次函數(shù)的圖像與性質(zhì)求解即可.

(2)根據(jù)凹函數(shù)的定義求解的正負(fù)判斷即可.

(3)分情況去絕對值,再參變分離求解范圍即可.

1)當(dāng)a1時(shí),

由二次函數(shù)的圖象及性質(zhì)可知,,fxmaxf2)=6,即所值域?yàn)?/span>;

2)當(dāng)a1時(shí),函數(shù)fx)是凹函數(shù),此時(shí)fx)=x2+x,

,

作差得到:

即有f,故函數(shù)fx)=x2+x是凹函數(shù);

3)由﹣1≤fx)=ax2+x≤1,則有,即,

i)當(dāng)x0時(shí),則aR恒成立;

ii)當(dāng)x∈(0,1]時(shí),有,即

x∈(0,1],則,

∴當(dāng)時(shí),,,

∴實(shí)數(shù)a的取值范圍為[2,0]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實(shí)數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,,E,F分別為AD,PC的中點(diǎn).

求證:平面BEF

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)、為常數(shù)且),滿足條件,且方程有等根.

1)若,恒成立,求實(shí)數(shù)的取值范圍;

2)是否存在實(shí)數(shù),使當(dāng)定義域?yàn)?/span>時(shí),值域?yàn)?/span>?如果存在,求出,的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)fx),當(dāng)x≥0時(shí),fx)=(x121的圖象如圖所示,

1)請補(bǔ)全函數(shù)fx)的圖象并寫出它的單調(diào)區(qū)間.

2)根據(jù)圖形寫出函數(shù)fx)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù)

1)求、的值;

2)判斷的單調(diào)性(不需要證明),并寫出的值域;

3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于往屆高三年級數(shù)學(xué)學(xué)科的學(xué)習(xí)方式大都是“刷題一講題一再刷題”的模式,效果不理想,某市一中的數(shù)學(xué)課堂教改采用了“記題型一刷題一檢測效果”的模式,并記錄了某學(xué)生的記題型時(shí)間(單位:)與檢測效果的數(shù)據(jù)如下表所示.

記題型時(shí)間

1

2

3

4

5

6

7

檢測效果

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)據(jù)統(tǒng)計(jì)表明,之間具有線性相關(guān)關(guān)系,請用相關(guān)系數(shù)加以說明(若,則認(rèn)為有很強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有很強(qiáng)的線性相關(guān)關(guān)系);

(2)建立關(guān)于的回歸方程,并預(yù)測該學(xué)生記題型的檢測效果;

(3)在該學(xué)生檢測效果不低于3.6的數(shù)據(jù)中任取2個(gè),求檢測效果均高于4.4的概率.

參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為

,相關(guān)系數(shù)

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

同步練習(xí)冊答案