【題目】定義在R上的函數(shù)f(x)滿足:如果對任意的x1,x2∈R,都有f(),則稱函數(shù)f(x)是R上的凹函數(shù),已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0)
(1)當(dāng)a=1,x∈[﹣2,2]時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)a=1時(shí),試判斷函數(shù)f(x)是否為凹函數(shù),并說明理由;
(3)如果函數(shù)f(x)對任意的x∈[0,1]時(shí),都有|f(x)|≤1,試求實(shí)數(shù)a的范圍.
【答案】(1);(2)凹函數(shù);見解析(3)[﹣2,0].
【解析】
(1)根據(jù)二次函數(shù)的圖像與性質(zhì)求解即可.
(2)根據(jù)凹函數(shù)的定義求解的正負(fù)判斷即可.
(3)分情況去絕對值,再參變分離求解范圍即可.
(1)當(dāng)a=1時(shí),,
由二次函數(shù)的圖象及性質(zhì)可知,,f(x)max=f(2)=6,即所值域?yàn)?/span>;
(2)當(dāng)a=1時(shí),函數(shù)f(x)是凹函數(shù),此時(shí)f(x)=x2+x,
,,
作差得到:
,
即有f(),故函數(shù)f(x)=x2+x是凹函數(shù);
(3)由﹣1≤f(x)=ax2+x≤1,則有,即,
(i)當(dāng)x=0時(shí),則a∈R恒成立;
(ii)當(dāng)x∈(0,1]時(shí),有,即,
又x∈(0,1],則,
∴當(dāng)時(shí),,,
∴實(shí)數(shù)a的取值范圍為[﹣2,0].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實(shí)數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,,E,F分別為AD,PC的中點(diǎn).
Ⅰ求證:平面BEF;
Ⅱ若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(、為常數(shù)且),滿足條件,且方程有等根.
(1)若,恒成立,求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),,使當(dāng)定義域?yàn)?/span>時(shí),值域?yàn)?/span>?如果存在,求出,的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=(x﹣1)2﹣1的圖象如圖所示,
(1)請補(bǔ)全函數(shù)f(x)的圖象并寫出它的單調(diào)區(qū)間.
(2)根據(jù)圖形寫出函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù)
(1)求、的值;
(2)判斷的單調(diào)性(不需要證明),并寫出的值域;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于往屆高三年級數(shù)學(xué)學(xué)科的學(xué)習(xí)方式大都是“刷題一講題一再刷題”的模式,效果不理想,某市一中的數(shù)學(xué)課堂教改采用了“記題型一刷題一檢測效果”的模式,并記錄了某學(xué)生的記題型時(shí)間(單位:)與檢測效果的數(shù)據(jù)如下表所示.
記題型時(shí)間 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
檢測效果 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)據(jù)統(tǒng)計(jì)表明,與之間具有線性相關(guān)關(guān)系,請用相關(guān)系數(shù)加以說明(若,則認(rèn)為與有很強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有很強(qiáng)的線性相關(guān)關(guān)系);
(2)建立關(guān)于的回歸方程,并預(yù)測該學(xué)生記題型的檢測效果;
(3)在該學(xué)生檢測效果不低于3.6的數(shù)據(jù)中任取2個(gè),求檢測效果均高于4.4的概率.
參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為,
,相關(guān)系數(shù)
參考數(shù)據(jù):,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com