【題目】已知f(x)是定義在(﹣1,1)上的偶函數(shù),當(dāng)x∈[0,1)時f(x)=lg ,
(1)求f(x)的解析式;
(2)探求f(x)的單調(diào)區(qū)間,并證明f(x)的單調(diào)性.
【答案】
(1)解:設(shè)x∈(﹣1,0),則﹣x∈(0,1),
∴f(﹣x)=lg ,
∵f(x)是定義在(﹣1,1)上的偶函數(shù),
∴f(x)=f(﹣x)=lg ,
綜上可得:f(x)=
(2)解:f(x)在[0,1)上單調(diào)遞減,在(﹣1,0)單調(diào)遞增.證明如下:
∵f′(x)= ,
當(dāng)x∈(﹣1,0)時,f′(x)>0恒成立,
當(dāng)x∈[0,1),f′(x)<0恒成立,
故f(x)在[0,1)上單調(diào)遞減,在(﹣1,0)單調(diào)遞增
【解析】(1)根據(jù)f(x)是定義在(﹣1,1)上的偶函數(shù),當(dāng)x∈[0,1)時f(x)=lg ,求出x∈(﹣1,0)時函數(shù)的解析式,綜合可得答案;(2)f(x)在[0,1)上單調(diào)遞減,在(﹣1,0)單調(diào)遞增,利用導(dǎo)數(shù)法可證得結(jié)論.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的左右焦點(diǎn)F1、F2 , 離心率為 ,雙曲線方程為 =1(a>0,b>0),直線x=2與雙曲線的交點(diǎn)為A、B,且|AB|= .
(Ⅰ)求橢圓與雙曲線的方程;
(Ⅱ)過點(diǎn)F2的直線l與橢圓交于M、N兩點(diǎn),交雙曲線與P、Q兩點(diǎn),當(dāng)△F1MN(F1為橢圓的左焦點(diǎn))的內(nèi)切圓的面積取最大值時,求△F1PQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,圓,點(diǎn)為拋物線上的動點(diǎn), 為坐標(biāo)原點(diǎn),線段的中點(diǎn)的軌跡為曲線.
(1)求拋物線的方程;
(2)點(diǎn)是曲線上的點(diǎn),過點(diǎn)作圓的兩條切線,分別與軸交于兩點(diǎn).
求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= + 的圖象關(guān)于y軸對稱,且a>0.
(1)求a的值;
(2)求f(x)在[0,2]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若Sn=cos +cos +…+cos (n∈N+),則在S1 , S2 , …,S2015中,正數(shù)的個數(shù)是( )
A.882
B.756
C.750
D.378
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,x∈[3,5].
(1)利用定義證明函數(shù)f(x)單調(diào)遞增;
(2)求函數(shù)f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= .
(Ⅰ)求證:PD⊥平面PAB;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求 的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com