【題目】在平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點為F,拋物線上有三個動點A,B,C.

1)若,求;

2)若,AB的垂直平分線經(jīng)過一個定點Q,求△QAB面積的最大值.

【答案】16;(2.

【解析】

1)根據(jù)向量關(guān)系求得,根據(jù)焦半徑公式即可得解;

2)求出定點Q,聯(lián)立直線與拋物線求出,根據(jù)面積公式求解最值.

1)平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點為F,拋物線上有三個動點A,B,C

設(shè),

所以,所以,

2,,所以

設(shè)線段AB中點,

線段AB的垂直平分線:,,

所以AB的垂直平分線經(jīng)過一個定點Q3,0),

AB的方程為

,

Q3,0)到AB的距離

所以三角形面積

當(dāng)且僅當(dāng)時取得等號,

此時

所以QAB面積的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知.

(1)求角C的值;

(2)若c=2,且△ABC的面積為,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】籃球場上有5個人在練球,其戰(zhàn)術(shù)是由甲開始發(fā)球(第1次傳球),經(jīng)過6次傳球跑動后(中途每人的傳接球機會均等),回到甲,由甲投3分球,其不同的傳球方式有( )種.

A. 4 100 B. 1 024 C. 976 D. 820

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為測試特斯拉汽車的百米加速時間,研發(fā)人員記錄了汽車在、、、、時刻的位移,并對數(shù)據(jù)做了初步處理,得到圖.同時,令,得到數(shù)據(jù)圖,現(xiàn)畫出,的散點圖.

累加

累加

1)根據(jù)散點圖判斷,,哪兩個量之間線性相關(guān)程度更強?(直接給出判斷即可);

2)根據(jù)(1)的結(jié)果選擇線性相關(guān)程度更強的兩個量,建立相應(yīng)的回歸直線方程;

3)根據(jù)(2)的結(jié)果預(yù)計特斯拉汽車百米加速需要的時間.

附:對于一組數(shù)據(jù)、、、,其回歸直線的斜率和截距的最小二乘估計分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象的一個對稱中心是,將的圖象向左平移個單位長度后得到函數(shù)的圖象.

1)求函數(shù)的解析式;

2)若對任意,當(dāng)時,都有,求實數(shù)的最大值;

3)若對任意實數(shù)上與直線的交點個數(shù)不少于6個且不多于10個,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )

A. 60π B. 36π C. 24π D. 12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款電視機的使用時間,研究人員對該款電視機進行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:

并對不同年齡層的市民對這款電視機的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

(1)根據(jù)圖中的數(shù)據(jù),試估計該款電視機的平均使用時間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認為“愿意購買該款電視機”與“市民的年齡”有關(guān);

(3)若按照電視機的使用時間進行分層抽樣,從使用時間在[0,4)和[4,20]的電視機中抽取5臺,再從這5臺中隨機抽取2臺進行配件檢測,求被抽取的2臺電視機的使用時間都在[4,20]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營了來自中國的小龍蝦,這些小龍蝦標(biāo)有等級代碼.為得到小龍蝦等級代碼數(shù)值與銷售單價之間的關(guān)系,經(jīng)統(tǒng)計得到如下數(shù)據(jù):

等級代碼數(shù)值

38

48

58

68

78

88

銷售單價(元

16.8

18.8

20.8

22.8

24

25.8

(1)已知銷售單價與等級代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);

(2)若莫斯科某餐廳銷售的中國小龍蝦的等級代碼數(shù)值為98請估計該等級的中國小龍蝦銷售單價為多少元?

參考公式:對一組數(shù)據(jù),,····,其回歸直線的斜率和截距最小二乘估計分別為:,.

參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊答案