設(shè)函數(shù).
(1)求的值域;
(2)記△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若,求a的值.
(1);(2)或.
解析試題分析:(1)將函數(shù)進行化簡,主要用到兩角和的余弦公式,二倍角公式中的降冪公式進行化簡,然后用化一公式進行合并,整理成,易求函數(shù)的值域了.
(2)此題利用,求出的值,下面主要有兩種方法,首先可以利用余弦定理,代入得到關(guān)于的方程,求出.或是利用正弦定理,求出角C,然后利用特殊三角形,易求邊.
試題解析:(1)
3分
因此的值域為[0,2]. 6分
(2)由得,
即,又因,故. 9分
解法1:由余弦定理,得,
解得. 12分
解法2:由正弦定理,得. 9分
當(dāng)時,,從而;
當(dāng)時,,又,從而.
故a的值為1或2. 12分
考點:1.三角函數(shù)的化簡;2.正余弦定理.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=是奇函數(shù).
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果函數(shù)的定義域為R,對于定義域內(nèi)的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時,求在上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,.若與交點個數(shù)為2013,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左焦點為,左、右頂點分別為,過點且傾斜角為的直線交橢圓于兩點,橢圓的離心率為,.
(1)求橢圓的方程;
(2)若是橢圓上不同兩點,軸,圓過點,且橢圓上任意一點都不在圓內(nèi),則稱圓為該橢圓的內(nèi)切圓.問橢圓是否存在過點的內(nèi)切圓?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(),其圖像在處的切線方程為.函數(shù),.
(1)求實數(shù)、的值;
(2)以函數(shù)圖像上一點為圓心,2為半徑作圓,若圓上存在兩個不同的點到原點的距離為1,求的取值范圍;
(3)求最大的正整數(shù),對于任意的,存在實數(shù)、滿足,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:對于函數(shù),若存在非零常數(shù),使函數(shù)對于定義域內(nèi)的任意實數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個函數(shù),使(為常數(shù),)為廣義周期函數(shù),并求出它的一個廣義周期和周距;
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)在上的值域為時,求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(xiàn)(x)=f(x)-g(x),求函數(shù)F(x)的極值點及相應(yīng)的極值.
(2)若對于任意x2>0,存在x1滿足x1<x2且g(x1)=f(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知α、β是方程x2+(2m-1)x+4-2m=0的兩個實根,且α<2<β,求m的取值范圍;(2)若方程x2+ax+2=0的兩根都小于-1,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com