如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

(1)  ,(2) 當(dāng)時(shí),,當(dāng)時(shí),, (3) .

解析試題分析:(1)新定義問題,必須從定義出發(fā),實(shí)際是對(duì)定義條件的直譯. 由,(2)由 性質(zhì)知函數(shù)為偶函數(shù). ∴當(dāng)時(shí),∵單調(diào)增,∴時(shí),,當(dāng)時(shí),∵單調(diào)減,在上單調(diào)增,又,∴時(shí),,當(dāng)時(shí),∵單調(diào)減,在上單調(diào)增,又,∴時(shí),. (3) ∵函數(shù)具有“性質(zhì)” ∴∴函數(shù)是以2為周期的函數(shù). 當(dāng)時(shí),為偶函數(shù),因此易得函數(shù)是以1為周期的函數(shù).結(jié)合圖像得: ①當(dāng)時(shí),要使得有2013個(gè)交點(diǎn),只要在區(qū)間有2012個(gè)交點(diǎn),而在內(nèi)有一個(gè)交點(diǎn)∴,從而得,②當(dāng)時(shí),同理可得,③當(dāng)時(shí),不合題意, 綜上所述.
(1)由

∴函數(shù)具有“性質(zhì)”,其中       2分
(2) ∵具有“性質(zhì)”

設(shè),則,∴
              4分
當(dāng)時(shí),∵單調(diào)增,∴時(shí),      5分
當(dāng)時(shí),∵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)畫出該函數(shù)的圖像;
(2)設(shè),求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的奇偶性;
(2)若函數(shù)上為減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)a為常數(shù)且a>0.
(1)證明:函數(shù)f(x)的圖像關(guān)于直線x=對(duì)稱;
(2)若x0滿足f(f(x0))= x0,但f(x0)≠x0,則x0稱為函數(shù)f(x)的二階周期點(diǎn),如果f(x)有兩個(gè)二階周期點(diǎn)x1,x2,試確定a的取值范圍;
(3)對(duì)于(2)中的x1,x2,和a,設(shè)x3為函數(shù)f(f(x))的最大值點(diǎn),A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),記△ABC的面積為S(a),討論S(a)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)滿足條件.
(1)求;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個(gè)游泳池,計(jì)劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計(jì)),切點(diǎn)為M,并把該地塊分為兩部分.現(xiàn)以點(diǎn)O為坐標(biāo)原點(diǎn),以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿足函數(shù))的圖象,且點(diǎn)M到邊OA距離為
(1)當(dāng)時(shí),求直路所在的直線方程;
(2)當(dāng)t為何值時(shí),地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求的值域;
(2)記△ABC的內(nèi)角A,B,C的對(duì)邊長分別為a,b,c,若,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)a≥-2時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個(gè)極值點(diǎn)為,其中,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案