【題目】已知過拋物線y22pxp0)的焦點F的直線與拋物線交于A,B兩點,且3,拋物線的準線lx軸交與點C,AA1垂直l于點A1,若四邊形AA1CF的面積為,則準線l的方程為(

A.B.C.x=﹣2D.x=﹣1

【答案】D

【解析】

由題意得過焦點的直線的斜率存在且不為零,設直線方程,聯(lián)立直線與拋物線的方程,由根與系數(shù)的關系及向量的關系得到 點的坐標,代入拋物線方程可得參數(shù)的關系,由四邊形的時梯形求出面積即可求出參數(shù)的值,進而求出準線方程.

解:由題意得拋物線的準線方程:,焦點坐標,,設,,,,,,,

直線的斜率存在且不為零,設,代入拋物線方程:整理得:,

,而,,,點在拋物線上可得:,

,四邊形的面積為,而四邊形是直角梯形,

所以面積為:,

,,,

,所以準線方程:

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2x3+ax2+bx+1的極值點為﹣11

1)求函數(shù)fx)的解析式;

2)求fx)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)。

(1)若曲線在點處的切線與直線垂直,求的單調遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));

(2)若對任意恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有黑掃黑、無黑除惡、無惡治亂,維護社會穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動投案,某市公安機關對某月連續(xù)7天主動投案的人員進行了統(tǒng)計,表示第天主動投案的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

6

7

3

4

5

5

5

6

7

1)若具有線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

2)判定變量之間是正相關還是負相關.(寫出正確答案,不用說明理由)

3)預測第八天的主動投案的人數(shù)(按四舍五入取到整數(shù)).

參考公式:, ./span>

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若),,,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,點上.

(1)求橢圓的方程;

(2)若直線與橢圓相交于,兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy22pxp0)與圓無公共點,過拋物線C上一點M作圓D的兩條切線,切點分別為E,F,當點M在拋物線C上運動時,直線EF都不通過的點構成一個區(qū)域,求這個區(qū)域的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為研究男、女生的身高差異,現(xiàn)隨機從高二某班選出男生、女生各10人,并測量他們的身高,測量結果如下(單位:厘米):

男:164 178 174 185 170 158 163 165 161 170

女:165 168 156 170 163 162 158 153 169 172

(1)根據(jù)測量結果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.

(2)請根據(jù)測量結果得到20名學生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認為男、女生身高有差異?

人數(shù)

男生

女生

身高

身高

參照公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設可以用測量結果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)

在平面直角坐標系xOy中,橢圓C:(ab0)的上頂點到焦點的距離為2,離心率為

(1)求a,b的值.

(2)設P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.

若k=1,求OAB面積的最大值;

)若PA2+PB2的值與點P的位置無關,求k的值.

查看答案和解析>>

同步練習冊答案