【題目】在直角坐標(biāo)系中,圓軸相切于點(diǎn),且圓心在直線上.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(II)設(shè)為圓上的兩個(gè)動(dòng)點(diǎn), ,若直線的斜率之積為定值2,試探求的最小值.

【答案】(I)見(jiàn)解析(II) 當(dāng)時(shí), 最小值為.

【解析】試題分析:(1)根據(jù)直線和圓的位置關(guān)系得到圓心和半徑,得到圓的方程;(2)根據(jù)題意得到,通過(guò)換元求得函數(shù)的最值即可。

解析:

(I)因?yàn)閳ACy軸相切于點(diǎn),所以圓心的縱坐標(biāo).

因?yàn)閳A心在直線上,所以,

又由圓軸相切,可得圓的半徑為 2 .

所以的方程為: .

(II)依題意,知心不與重合,

故不妨設(shè)直線方程為: .

因?yàn)閳A心到直線的距離為.

因?yàn)橹本的斜率之積為定值-2,

所以直線的斜率為: ,

的求解方法,可得,

所以

化簡(jiǎn)得.

考察,

,得.

有正數(shù)解,且,

解得.

.

因?yàn)楫?dāng)時(shí),可解得,

所以當(dāng)時(shí), 最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐A﹣BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點(diǎn),AB=BC=2,BE=

(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點(diǎn)G,使得二面角D﹣BG﹣E的大小為 ?若存在,求 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(理科)已知函數(shù)f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.
(1)當(dāng)t≠0時(shí),求f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)為f(x)的導(dǎo)函數(shù),求g(x)單調(diào)區(qū)間;
(2)已知函數(shù)f(x)在x=1處取得極大值,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號(hào)是 . (請(qǐng)把所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市上年度電價(jià)為0.80元/千瓦時(shí),年用電量為千瓦時(shí).本年度計(jì)劃將電價(jià)降到0.55元/千瓦時(shí)~0.7元/千瓦時(shí)之間,而居民用戶期望電價(jià)為0.40元/千瓦時(shí)(該市電力成本價(jià)為0.30元/千瓦時(shí)),經(jīng)測(cè)算,下調(diào)電價(jià)后,該城市新增用電量與實(shí)際電價(jià)和用戶期望電價(jià)之差成反比,比例系數(shù)為.試問(wèn)當(dāng)?shù)仉妰r(jià)最低為多少元/千瓦時(shí),可保證電力部門(mén)的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a為實(shí)數(shù),函數(shù),xR

(I)當(dāng)a=0時(shí),求f(x)在區(qū)間[02]上的最大值和最小值;

(Ⅱ)求函數(shù)f(x)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB的端點(diǎn)A的坐標(biāo)為,端點(diǎn)B是圓: 上的動(dòng)點(diǎn).

(1)求過(guò)A點(diǎn)且與圓相交時(shí)的弦長(zhǎng)為的直線的方程。

(2)求線段AB中點(diǎn)M的軌跡方程,并說(shuō)明它是什么圖形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱,底面為等邊三角形, .

求三棱錐的體積;

在線段上尋找一點(diǎn)使得,請(qǐng)說(shuō)明作法和理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案