【題目】已知函數(shù)f(x)=x3﹣3x,函數(shù)f(x)的圖象在x=0處的切線方程是;函數(shù)f(x)在區(qū)間[0,2]內(nèi)的值域是

【答案】y=﹣3x;[﹣2,2]
【解析】解:函數(shù)f(x)=x3﹣3x,切點坐標(0,0),導數(shù)為:y′=3x2﹣3,切線的斜率為:﹣3,

所以切線方程為:y=﹣3x;

3x2﹣3=0,可得x=±1,x∈(﹣1,1),y′<0,函數(shù)是減函數(shù),x∈(1,+∞),y′>0函數(shù)是增函數(shù),

f(0)=0,f(1)=﹣2,f(2)=8﹣6=2,

函數(shù)f(x)在區(qū)間[0,2]內(nèi)的值域是:[﹣2,2].

所以答案是:y=﹣3x;[﹣2,2].

【考點精析】通過靈活運用函數(shù)的最大(小)值與導數(shù),掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|﹣2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R, ,求b(a+c)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖沖之之子祖暅是我國南北朝時代偉大的科學家,他在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”.意思是,如果兩個等高的幾何體在同高處截得的截面面積恒等,那么這兩個幾何體的體積相等.此即祖暅原理.利用這個原理求球的體積時,需要構(gòu)造一個滿足條件的幾何體,已知該幾何體三視圖如圖所示,用一個與該幾何體的下底面平行相距為h(0<h<2)的平面截該幾何體,則截面面積為(
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某企業(yè)的近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:
(1)試問這3年的前7個月中哪個月的月平均利潤較高?
(2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;
(3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關(guān)公式: = = , = x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關(guān)于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,角A、B、C所對的邊分別為a,b,c,且 =
(1)求A
(2)求cosB+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)|x﹣a|+b,a,b∈R,則下列敘述中,正確的序號是( ) ①對任意實數(shù)a,b,函數(shù)y=f(x)在R上是單調(diào)函數(shù);
②對任意實數(shù)a,b,函數(shù)y=f(x)在R上都不是單調(diào)函數(shù);
③對任意實數(shù)a,b,函數(shù)y=f(x)的圖象都是中心對稱圖象;
④存在實數(shù)a,b,使得函數(shù)y=f(x)的圖象不是中心對稱圖象.
A.①③
B.②③
C.①④
D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對任意x∈[a,+∞],都有f(x)≤x﹣a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四數(shù)a1 , a2 , a3 , a4依次成等比數(shù)列,且公比q不為1.將此數(shù)列刪去一個數(shù)后得到的數(shù)列(按原來的順序)是等差數(shù)列,則正數(shù)q的取值集合是

查看答案和解析>>

同步練習冊答案