某廠生產(chǎn)某種產(chǎn)品(百臺(tái)),總成本為(萬元),其中固定成本為2萬元, 每生產(chǎn)1百臺(tái),成本增加1萬元,銷售收入(萬元),假定該產(chǎn)品產(chǎn)銷平衡。
(1)若要該廠不虧本,產(chǎn)量應(yīng)控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺(tái)時(shí),可使利潤最大?
(3)求該廠利潤最大時(shí)產(chǎn)品的售價(jià)。

(1);(2)當(dāng)年產(chǎn)臺(tái)時(shí),可使利潤最大;(3)元/臺(tái).

解析試題分析:(1)該廠不虧本即;(2)利潤最大即的最大值,因是分段函數(shù),需求得每段的最大值,然后最大的所求;(3)有可得產(chǎn)品的售價(jià).
試題解析:由題意得,成本函數(shù)為,從而利潤函數(shù)
。    2分
(1)要使不虧本,只要,
當(dāng)時(shí),,  4分
當(dāng)時(shí),
綜上,,                            6分
答:若要該廠不虧本,產(chǎn)量應(yīng)控制在100臺(tái)到550臺(tái)之間。  7分
(2)當(dāng)時(shí),
故當(dāng)時(shí),(萬元)    9分
當(dāng)時(shí),,    10分
綜上,當(dāng)年產(chǎn)300臺(tái)時(shí),可使利潤最大。    11分
(3)由(2)知,時(shí),利潤最大,此時(shí)的售價(jià)為
(萬元/百臺(tái))=233元/臺(tái)。  14分
考點(diǎn):1.函數(shù)的應(yīng)用;2.解一元二次不等式和求一元二次函數(shù)最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù).

(1)當(dāng)時(shí),畫出函數(shù)的大致圖像;
(2)當(dāng)時(shí),根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)滿足,且.
(1)求解析式;
(2)當(dāng)時(shí),函數(shù)的圖像恒在函數(shù)的圖像的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)過點(diǎn).
(1)求實(shí)數(shù);
(2)將函數(shù)的圖像向下平移1個(gè)單位,再向右平移個(gè)單位后得到函數(shù)圖像,設(shè)函數(shù)關(guān)于軸對稱的函數(shù)為,試求的解析式;
(3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/c/1ldwo2.png" style="vertical-align:middle;" />,且的圖象連續(xù)不間斷. 若函數(shù)滿足:對于給定的),存在,使得,則稱具有性質(zhì).
(Ⅰ)已知函數(shù),,判斷是否具有性質(zhì),并說明理由;
(Ⅱ)已知函數(shù) 若具有性質(zhì),求的最大值;
(Ⅲ)若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/c/1ldwo2.png" style="vertical-align:middle;" />,且的圖象連續(xù)不間斷,又滿足,
求證:對任意,函數(shù)具有性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),函數(shù)的圖像在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),解不等式;
(3)當(dāng)時(shí),對,直線的圖像下方.求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)a=3時(shí),求函數(shù)上的最大值和最小值;
(Ⅱ)求函數(shù)的定義域,并求函數(shù)的值域。(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/9/1rvgj4.png" style="vertical-align:middle;" />的單調(diào)減函數(shù),且是奇函數(shù),當(dāng)時(shí),
(1)求的解析式;(2)解關(guān)于的不等式

查看答案和解析>>

同步練習(xí)冊答案