已知函數(shù)過點(diǎn).
(1)求實(shí)數(shù);
(2)將函數(shù)的圖像向下平移1個(gè)單位,再向右平移個(gè)單位后得到函數(shù)圖像,設(shè)函數(shù)關(guān)于軸對(duì)稱的函數(shù)為,試求的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.

(1);(2);(3).

解析試題分析:(1)由條件即可解出;(2)函數(shù)向下平移1個(gè)單位得到,然后關(guān)于軸對(duì)稱得到,代入(1)式的即可得到函數(shù)的解析式;(3)設(shè),故,將不等式在其定義域恒成立的問題,轉(zhuǎn)化二次函數(shù)時(shí)恒成立,然后根據(jù)二次函數(shù)的圖像與性質(zhì)進(jìn)行求解即可得到的取值范圍.
試題解析:(1)由已知        3分
(2)向下平移個(gè)單位后再向右平移個(gè)單位后得到函數(shù),函數(shù)關(guān)于軸對(duì)稱的函數(shù)為
        6分
(3)恒成立
設(shè)
即:,在時(shí)恒成立        8分

           11分
              13分
綜合得:                      14分.
考點(diǎn):1.對(duì)數(shù)函數(shù)的圖像與性質(zhì);2.函數(shù)圖像的平移與對(duì)稱變換;3.二次函數(shù)的最值問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)滿足條件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象經(jīng)過點(diǎn)
(1)求函數(shù)的解析式;
(2)設(shè),用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上單調(diào)遞減;
(3)解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求不等式的解集:
(2)求函數(shù)的定義域:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)與第x天近似地滿足(千人),且參觀民俗文化村的游客人均消費(fèi)近似地滿足(元).
(1)求該村的第x天的旅游收入(單位千元,1≤x≤30,)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品(百臺(tái)),總成本為(萬元),其中固定成本為2萬元, 每生產(chǎn)1百臺(tái),成本增加1萬元,銷售收入(萬元),假定該產(chǎn)品產(chǎn)銷平衡。
(1)若要該廠不虧本,產(chǎn)量應(yīng)控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺(tái)時(shí),可使利潤(rùn)最大?
(3)求該廠利潤(rùn)最大時(shí)產(chǎn)品的售價(jià)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)滿足
(1)求證,并求的取值范圍;
(2)證明函數(shù)內(nèi)至少有一個(gè)零點(diǎn);
(3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知偶函數(shù)y=f(x)定義域是[-3,3],當(dāng)時(shí),f(x)=-1.

(1)求函數(shù)y=f(x)的解析式;
(2)畫出函數(shù)y=f(x)的圖象,并利用圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)對(duì)任意,都有,當(dāng)時(shí), 
(1)求證:是奇函數(shù);
(2)試問:在時(shí) ,是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案