兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為對城A與城B的影響度之和,記C點到城A的距離為,建在C處的垃圾處理廠對城A和城B的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當垃圾處理廠建在AB的中點時,對A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最小?若存在,求出該點到城A的距離;若不存在,說明理由。

(1) (2) 在弧AB存在C點使得交點在此處的垃圾處廠對A、B影響最小,該點距A的距離是km

解析試題分析:解:(1)如圖由題意知
             3
其中當
                                   5
           6
(2)
              9


            11







0



 

                13
答:在弧AB存在C點使得交點在此處的垃圾處廠對A、B影響最小,該點距A的距離是km。                 14
考點:導數(shù)在實際生活中的運用
點評:解決的關(guān)鍵是能夠利用導數(shù)的符號來研究函數(shù)單調(diào)性,以及函數(shù)的最值的求解,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)p;函數(shù)上是增函數(shù),q:函數(shù)的定義域為R.
(1)若,試判斷命題p的真假;
(2)若命題p與命題q一真一假,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位決定對本單位職工實行年醫(yī)療費用報銷制度,擬制定年醫(yī)療總費用在2萬元至10萬元(包括2萬元和10萬元)的報銷方案,該方案要求同時具備下列三個條件:①報銷的醫(yī)療費用y(萬元)隨醫(yī)療總費用x(萬元)增加而增加;②報銷的醫(yī)療費用不得低于醫(yī)療總費用的50%;③報銷的醫(yī)療費用不得超過8萬元.
(1)請你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報銷方案,請你確定整數(shù)的值.(參考數(shù)據(jù):ln2»0.69,ln10»2.3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)。
(1)求不等式的解集;
(2)若存在x使不等式成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y (單位:千克)與銷售價格 (單位:元/千克)滿足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格x的值, 使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地西紅柿上市時間僅能持續(xù)5個月,預測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲勢態(tài),而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,F(xiàn)有三種價格模擬函數(shù):①,②,③,(以上三式中均是不為零的常數(shù),且)
(1)    為了準確研究其價格走勢,應(yīng)選擇哪種價格模擬函數(shù),為什么?
(2)若,求出所選函數(shù)的解析式(注:函數(shù)的定義域是)。其中表示8月1日,表示9月1日,……,以此類推;為保證該地的經(jīng)濟收益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該西紅柿將在哪幾個月份內(nèi)價格下跌。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某商品每件成本9元,售價為30元,每星期賣出432件,如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比,已知商品單價降低2元時,一星期多賣出24件.(I)將一個星期的商品銷售利潤表示成的函數(shù);(II)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售高訂購,決定當一次訂量超過100個時,每多訂購一個,訂購的全部零件的出廠單價降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰好降為51元?
(2)設(shè)一次訂購量為x個,零件的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式.
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1 000個,利潤又是多少元(工廠售出一個零件的利潤=實際出廠單價-成本價)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共8分)
提高二環(huán)路的車輛通行能力可有效改善整個城區(qū)的交通狀況,在一般情況下,二環(huán)路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)。當二環(huán)路上的車流密度達到600輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當60≤x≤600時,車流速度v是車流密度x的一次函數(shù)。
(Ⅰ)當0≤x≤600時,求函數(shù)f(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內(nèi)通過二環(huán)路上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值。(精確到1輛/小時)

查看答案和解析>>

同步練習冊答案