設(shè)對(duì)于不大于的所有正實(shí)數(shù)a,如果滿足不等式|x-a|<b的一切實(shí)數(shù)x,也滿足不等式,求實(shí)數(shù)b的取值范圍.
【答案】分析:由題意可得b>0,求出這兩個(gè)不等式的解集,由題意可得 a2-≤a-b,且 a+b≤a2+,0<a≤.由此可得b小于或等于-a2+a+ 的最小值,且b小于或等于 a2-a+的最小值,由此求得實(shí)數(shù)b的取值范圍.
解答:解:由題意可得b>0是不用求的,否則|x-a|<b都沒(méi)解了.
故有-b<x-a<b,即a-b<x<a+b.
由不等式可得,-<x-a2,即 a2-<x<a2+
第二個(gè)不等式的范圍要大于第一個(gè)不等式,這樣只要滿足了第一個(gè)不等式,
肯定滿足第二個(gè)不等式,命題成立.
故有 a2-≤a-b,且 a+b≤a2+,0<a≤
化簡(jiǎn)可得 b≤-a2+a+,且b≤a2-a+
由于-a2+a+=-+∈[],故 b≤
由于 a2-a+=+∈[,].故 b≤
綜上可得 0<b≤
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,求二次函數(shù)在閉區(qū)間上的值域,函數(shù)的恒成立問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)對(duì)于不大于
5
4
的所有正實(shí)數(shù)a,如果滿足不等式|x-a|<b的一切實(shí)數(shù)x,也滿足不等式|x-a2|<
1
2
,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044

設(shè)對(duì)于不大于的所有正實(shí)數(shù)a,如果滿足不等式|x一a|<b的一切實(shí)數(shù)x,亦滿足不等式|x-a2|<,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

設(shè)對(duì)于不大于的所有正實(shí)數(shù),如果滿足不等式的一切實(shí)數(shù),也滿足不等式,求實(shí)數(shù)的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)對(duì)于不大于數(shù)學(xué)公式的所有正實(shí)數(shù)a,如果滿足不等式|x-a|<b的一切實(shí)數(shù)x,也滿足不等式數(shù)學(xué)公式,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案