【題目】在正方體中, 在線段上運(yùn)動(dòng)且不與, 重合,給出下列結(jié)論:
①;
②平面;
③二面角的大小隨點(diǎn)的運(yùn)動(dòng)而變化;
④三棱錐在平面上的投影的面積與在平面上的投影的面積之比隨點(diǎn)的運(yùn)動(dòng)而變化;
其中正確的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
【答案】D
【解析】對(duì)于①,連結(jié),則,因?yàn)?/span>平面, 平面,所以,故可證平面,由平面,可證 ,故①正確;對(duì)于②,連結(jié), ,則∥, ,即,因?yàn)?/span>平面, 平面, ,易證平面,由平面平面,所以可證平面,故②正確;對(duì)于③,當(dāng)在直線上運(yùn)動(dòng)時(shí), 的軌跡是平面, 的軌跡是平面,即二面角的大小不受影響,故③錯(cuò)誤;對(duì)于④,由于三棱錐在平面與在平面上投影的等底的三角形,且高相等,所以三棱錐在平面上投影的面積與在平面上投影的面積之比不變,故④錯(cuò)誤.
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面積S= sinBsinC,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點(diǎn)和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn),若直線與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員參加的每場比賽得分的莖葉圖,由甲、乙兩人這幾場比賽得分的中位數(shù)之和是( )
A.65
B.64
C.63
D.62
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面底面,,,,,為的中點(diǎn),側(cè)棱.
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價(jià)格y和房屋的面積x的數(shù)據(jù)
房屋面積(平方米) | 115 | 110 | 80 | 135 | 105 |
銷售價(jià)格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出散點(diǎn)圖
(2)求線性回歸方程
(3)根據(jù)(2)的結(jié)果估計(jì)房屋面積為150平方米時(shí)的銷售價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的單位長度相同.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo);
(Ⅱ)若直線l與曲線C相交弦長為,求直線l的參數(shù)方程(標(biāo)準(zhǔn)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面, , , 是棱的中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)求平面與平面所成二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com