精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐的底面為平行四邊形,,.

1)求證:;

2)求二面角的余弦值.

【答案】(1)見解析(2)

【解析】

中點,連接,由已知可證,可得平面,可證。

由已知可得是等腰三角形,分別以、軸建立空間直角坐標系,求出面與面的一個法向量,由兩法向量所成角的余弦值得二面角的余弦值。

解:(1)取中點,連接、.

,知,,.

平面,

平面,∴.

2)法一:由題可得,,故,所以.

所以可以為原點,分別以、、軸建立空間直角坐標系.

,,,

,,.

設平面的一個法向量為,則

.

同理可得平面的一個法向量為.

.

又二面角為銳二面角所以二面角的余弦為.

法二:設二面角,的大小分別為,,則

,

.

即二面角的余弦為.

而二面角與二面角大小互補、故二面角的余弦為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(α)=

(1)化簡f(α);

(2)α是第三象限角,cos(α)=,求f(α);

(3)α=-1860°,求f(α).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,射線的普通方程為,曲線的參數方程為為參數).O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)寫出的極坐標方程;

2)設的交點為P(點P不為極點),的交點為Q,當上變化時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】今年入夏以來,我市天氣反復,降雨頻繁.在下圖中統(tǒng)計了上個月前15天的氣溫,以及相對去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯誤的是()

A.今年每天氣溫都比去年氣溫高B.今年的氣溫的平均值比去年低

C.去年8-11號氣溫持續(xù)上升D.今年8號氣溫最低

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓G:x2+y2-x-y=0,經過橢圓的右焦點F及上頂點B,過圓外一點(m,0)(m>a)且傾斜角為的直線l交橢圓于C,D兩點.

1)求橢圓的方程;

2)若右焦點F在以線段CD為直徑的圓E的內部,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數,,若函數有4個零點,則實數的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的參數方程為:為參數).

1)求曲線,的直角坐標方程;

2)設曲線交于點,,已知點,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,若此橢圓上存在不同的兩點A,B關于直線y=4x+m對稱,則實數m的取值范圍是(  )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案