精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

【答案】
(1)解:∵f(x)= +log2x,

∴f(2)= = ,

f( )= ,

f(4)= ,

f( )=

∴f(2)+f( )=1,f(4)+f( )=1


(2)解:∵f(x)+f( )= + =1,

∴f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f(

=f(1)+[f(2)+f( )]+[f(3)+f( )]+…+[f(2016)+f( )]

=

=


【解析】(1)由f(x)= +log2x,能求出f(2),f( ),f(4),f( ),f(2)+f( ),f(4)+f( )的值.(2)由f(x)+f( )=1,能求出f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.
【考點精析】解答此題的關鍵在于理解函數的值的相關知識,掌握函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1的棱長為1,在正方體表面上與點A距離是 的點形成一條曲線,這條曲線的長度是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (x∈R)
(1)用定義證明f(x)是增函數;
(2)若g(x)=f(x)﹣a是奇函數,求g(x)在(﹣∞,a]上的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的單調區(qū)間;

(2)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

某學校簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間:(單位:分鐘)進行調查,結果如下:

若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”

(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動.

①求抽取的4為同學中有男同學又有女同學的概率;

②記抽取的“讀書迷”中男生人數為X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數單調遞增,其中

(1)求的值;

(2)若,當時,試比較的大小關系(其中的導函數),請寫出詳細的推理過程;

(3)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),
(1)求g(x)的定義域;
(2)求g(x)的最大值以及g(x)取最大值時x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= (ax﹣ax)(a>0且a≠1).
(1)判斷f(x)的奇偶性.
(2)討論f(x)的單調性.
(3)當x∈[﹣1,1]時,f(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln
(1)求函數f(x)的定義域,并判斷函數f(x)的奇偶性;
(2)對于x∈[2,6],f(x)>ln 恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案