【題目】若函數(shù)f(x)=ax(a>0,a≠1)在[﹣1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1﹣4m) 在[0,+∞)上是增函數(shù),則m= , a=

【答案】;
【解析】解:∵函數(shù)g(x)=(1﹣4m) 在[0,+∞)內是增函數(shù),
∴1﹣4m>0,
即m< ,
∵函數(shù)f(x)=ax(a>0,a≠1﹚在區(qū)間[﹣1,2]上的最大值為4,最小值為m,
當a>1時,函數(shù)f(x)=ax為增函數(shù),
∴a1=m,a2=4,
解得a=2,m= (舍去),
當0<a<1時,函數(shù)f(x)=ax為減函數(shù),
∴a1=4,a2=m,
解得a= ,m= ∈(﹣∞, ),
綜上所述,a= ,m=
所以答案是:m= ,a= ,
【考點精析】本題主要考查了函數(shù)的單調性的相關知識點,需要掌握注意:函數(shù)的單調性是函數(shù)的局部性質;函數(shù)的單調性還有單調不增,和單調不減兩種才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是自然對數(shù)的底數(shù), .

(1)求的單調區(qū)間,最大值;

(2)討論關于x的方程根的個數(shù).

所以當時,方程有兩個根;

時,方程有一兩個根;

時,方程有無兩個根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017莊河高級中學四模如圖,四棱錐中,底面是矩形,平面 平面,且是邊長為的等邊三角形, ,點的中點.

(1)求證: 平面 ;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數(shù),當時x≥0,f(x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x)≥x+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直角坐標平面內的兩個點P和Q滿足條件:①P和Q都在函數(shù)y=f(x)的圖象上;②P和Q關于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”([P,Q]與[Q,P]看作同一對“友好點對”).已知函數(shù) ,則此函數(shù)的“友好點對”有(
A.0對
B.1對
C.2對
D.3對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)滿足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樣本a1 , a2 , a3 , …,a10的平均數(shù)為 ,樣本b1 , b2 , b3 , …,b10的平均數(shù)為 ,那么樣本a1 , b1 , a2 , b2 , …,a10 , b10的平均數(shù)為( )
A.+
B. +
C.2( +
D. +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的離心率為, 、分別是它的左、右焦點,且存在直線,使、關于的對稱點恰好是圓 )的一條直徑的兩個端點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與拋物線)相交于、兩點,射線、與橢圓分別相交于點、.試探究:是否存在數(shù)集,當且僅當時,總存在,使點在以線段為直徑的圓內?若存在,求出數(shù)集;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知焦點在x軸上的橢圓 =1(b>0)有一個內含圓x2+y2= ,該圓的垂直于x軸的切線交橢圓于點M,N,且 (O為原點).

(1)求b的值;
(2)設內含圓的任意切線l交橢圓于點A、B.求證: ,并求| |的取值范圍.

查看答案和解析>>

同步練習冊答案