【題目】已知函數(shù).
(1)若曲線在處切線與坐標軸圍成的三角形面積為,求實數(shù)的值;
(2)若,求證:.
【答案】(1)或;(2)見解析
【解析】
(1)利用導函數(shù)求出曲線在處切線,表示出切線與坐標軸圍成三角形面積即可求解;
(2)需證明的不等式通過作差轉(zhuǎn)化成證明,利用導函數(shù)單調(diào)性求出最小值即可得證.
(1),則為切線斜率.
又,∴切點為.∴曲線在處切成方程為.
當時,,當時,(易知)
則切線與坐標軸圍成三角形面積為.
∴得.
所以或.
(2)法一:時,
要證的不等式為,即.
令,則.
易知遞增,,,∴僅有一解且,即.
當時,,遞減;當時,,遞增.
從而最小值為∴,故原不等式成立.
法二:時,要證的不等式為.令,則.
故問題化為證不等式恒成立.時,
令,則,當時,,遞減;
當時,,遞增.∴,從而原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】為了拓展城市的旅游業(yè),實現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.
(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:
A市居民 | B市居民 | |
喜歡楊樹 | 300 | 200 |
喜歡木棉樹 | 250 | 250 |
是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;
(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學期望;
(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一項針對某一線城市30~50歲都市中年人的消費水平進行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購買六類高價商品(電子產(chǎn)品、服裝、手表、運動與戶外用品、珠寶首飾、箱包)的金額(萬元)的頻數(shù)分布表如下:
(1)將頻率視為概率,估計該城市中年人購買六類高價商品的金額不低于5000元的概率.
(2)把購買六類高價商品的金額不低于5000元的中年人稱為“高收入人群”,根據(jù)已知條件完成22列聯(lián)表,并據(jù)此判斷能否有95%的把握認為“高收入人群”與性別有關?
參考公式:,其中
參考附表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,焦點為的拋物線的準線被橢圓截得的弦長為.
(1)求橢圓的標準方程;
(2)若點、到直線的距離之積為,求證:直線與橢圓相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線,為任意實數(shù).
(1)求證:直線必與圓相交;
(2)為何值時,直線被圓截得的弦長最短?最短弦長是多少?
(3)若直線被圓截得的弦的中點為點,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)定義:設是非零實常數(shù),若對于任意的,都有,則稱函數(shù)為“關于的偶型函數(shù)”
(1)請以三角函數(shù)為例,寫出一個“關于2的偶型函數(shù)”的解析式,并給予證明
(2)設定義域為的“關于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減
(3)設定義域為的“關于的偶型函數(shù)”是奇函數(shù),若,請猜測的值,并用數(shù)學歸納法證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生對函數(shù)的性質(zhì)進行研究,得出如下的結(jié)論:
函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
點是函數(shù)圖象的一個對稱中心;
函數(shù)圖象關于直線對稱;
存在常數(shù),使對一切實數(shù)x均成立,
其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為( )
A.B.C.D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com