【題目】已知函數(shù)f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)遞增區(qū)間;
(2)求f(x)的對稱軸方程;
(3)求f(x)的最大值并寫出取最大值時自變量x的集合.
【答案】
(1)解:函數(shù)f(x)=1+2sinxcosx+2cos2x=sin2x+cos2x+1= sin(2x+ )+2.
令 +2kπ≤2x+ ≤ +2kπ,解得 ≤x≤ +kπ(k∈Z),
∴f(x)遞增區(qū)間為[ , +kπ](k∈Z)
(2)解:由2x+ =kπ+ ,解得x= + (k∈Z),
∴f(x)的對稱軸方程為:x= + (k∈Z)
(3)解:當2x+ =2kπ+ ,解得x=kπ+ (k∈Z),f(x)max= +2.
∴f(x)取最大值時自變量x的集合為{x|x=kπ+ (k∈Z)}
【解析】(1)利用倍角公式、和差公式可得函數(shù)f(x)= sin(2x+ )+2.令 +2kπ≤2x+ ≤ +2kπ,解出即可得出f(x)遞增區(qū)間.(2)由2x+ =kπ+ ,解出x即可得出.(3)當2x+ =2kπ+ ,解得x=kπ+ (k∈Z),可得f(x)max= +2.
科目:高中數(shù)學 來源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示:
(1)試計算該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(元)與銷量(萬件)之間有較強線性相關關系,從歷史銷售記錄中抽樣得到如表5組與的對應數(shù)據(jù):
售價(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
據(jù)此計算出的回歸方程為,求的值;
(3)若從上述五組銷量中隨機抽取兩組,求兩組銷量中恰有一組超過6萬件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,在正方形ABCD中,點E,F(xiàn)分別是AB,BC的中點.將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ex﹣ (e為自然對數(shù)的底數(shù)).
(1)求函數(shù)y=f(x)在點(1,f(1))處的切線方程;
(2)當x∈(﹣1,+∞)時,證明:f(x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣ x2+(a﹣1)x+lnx.
(1)若a>﹣1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設要抽查某企業(yè)生產(chǎn)的某種品牌的袋裝牛奶的質(zhì)量是否達標,現(xiàn)從700袋牛奶中抽取50袋進行檢驗.利用隨機數(shù)表抽取樣本時,先將700袋牛奶按001,002,…,700進行編號,如果從隨機數(shù)表第3行第1組數(shù)開始向右讀,最先讀到的5袋牛奶的編號是614,593,379,242,203,請你以此方式繼續(xù)向右讀數(shù),隨后讀出的3袋牛奶的編號是 . (下列摘取了隨機數(shù)表第1行至第5行)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某學校組織的一次智力競賽中,比賽共分為兩個環(huán)節(jié),其中第一環(huán)節(jié)競賽題有A、B兩組題,每個選手最多有3次答題機會,答對一道A組題得20分,答對一道B組題得30分.選手可以任意選擇答題的順序,如果前兩次得分之和超過30分即停止答題,進入下一環(huán)節(jié)比賽,否則答3次.某同學正確回答A組題的概率都是p,正確回答B(yǎng)組題的概率都是 ,且回答正確與否相互之間沒有影響.該同學選擇先答一道B組題,然后都答A組題.已知第一環(huán)節(jié)比賽結(jié)束時該同學得分超過30分的概率為 .
(1)求p的值;
(2)用ξ表示第一環(huán)節(jié)比賽結(jié)束后該同學的總得分,求隨機變量ξ的數(shù)學期望;
(3)試比較該同學選擇都回答A組題與選擇上述方式答題,能進入下一環(huán)節(jié)競賽的概率的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明命題“當n是正奇數(shù)時,xn+yn能被x+y整除”,在第二步的證明時,正確的證法是( )
A.假設n=k(k∈N*)時命題成立,證明n=k+1時命題也成立
B.假設n=k(k是正奇數(shù))時命題成立,證明n=k+1時命題也成立
C.假設n=k(k是正奇數(shù))時命題成立,證明n=k+2時命題也成立
D.假設n=2k+1(k∈N)時命題成立,證明n=k+1時命題也成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com