(本小題滿分12)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點
(Ⅰ)求證:AC⊥BC1
(Ⅱ)求二面角的平面角的正切值.

(Ⅰ)證明:直三棱柱ABC-A1B1C1,底面三邊長AC=3,BC=4,AB=5,

∴ AC⊥BC,                                           …………………1分
又 AC⊥,且
∴ AC⊥平面BCC1,又平面BCC1        ……………………………………3分
∴ AC⊥BC           ………………………………………………………………4分
(Ⅱ)解法一:取中點,過,連接        …………5分

中點,
 ,又平面
平面
平面,平面

 又
平面平面         ………7分
  又
是二面角的平面角      ……………………………………8分
AC=3,BC=4,AA1=4,
∴在中,,,
      …………………………………………11分
∴二面角的正切值為  …………………………………………12分
解法二:分別為軸建立如圖所示空間直角坐標(biāo)系…………5分

AC=3,BC=4,AA1=4,
, ,,,
,

平面的法向量,&n

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是 AB、PC的中點.
(1) 求證:EF∥平面PAD;
(2) 求證:EF⊥CD;
(3) 若∠PDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,,,AB=2.M為PD的中點.求直線PC與平面ABM所成的角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,在直三棱柱ABC-A1B1C1中,點D、E分別在邊BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求證:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,兩條異面直線AB,CD與三個平行平面α,β,γ分別相交于A,E,B及
C,F,D,又AD、BC與平面β的交點為H,G.
求證:四邊形EHFG為平行四邊形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)如圖,四棱錐P—ABCD的底面是AB=2,BC=的矩形,側(cè)面PAB
是等邊三角形,且側(cè)面PAB⊥底面ABCD
(I)證明:側(cè)面PAB⊥側(cè)面PBC;
(II)求側(cè)棱PC與底面ABCD所成的角;
(III)求直線AB與平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知, 則兩點間距離的最小值是(    )

A. B.2 C. D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,分別為,的中點,四邊形是邊長為的正方形.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)·(2b)=-2,則x=________.

查看答案和解析>>

同步練習(xí)冊答案