圓C的方程為x
2+y
2-2x-2y-2=0,則該圓的半徑,圓心坐標(biāo)分別為
A.2,(-2,1) | B.4,(1,1) | C.2,(1,,1) | D.,(1,2) |
分析:圓的一般方程化為標(biāo)準(zhǔn)方程,即可確定圓的半徑和圓心坐標(biāo).
解答:解:圓的一般方程化為標(biāo)準(zhǔn)方程可得:(x-1)2+(y-1)2=4
∴圓的半徑和圓心坐標(biāo)分別為2,(1,2)
故選C.
點評:本題考查圓的一般方程,考查圓的半徑和圓心坐標(biāo),解題的關(guān)鍵是將圓的一般方程化為標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知方程
表示一個圓.
(1)求實數(shù)
的取值范圍;
(2)求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在一張矩形紙片上,畫有一個圓(圓心為O)和一個定點F (F在圓外).在圓上任取一點M,將紙片折疊使點M與點F重合,得到折痕CD.設(shè)直線CD與直線OM交于點P,則點P的軌跡為
A.圓 B.橢圓 C.雙曲線 D.直線
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分) 在平面直角坐標(biāo)系
中,已知直線
被圓[
截得的弦長為
(Ⅰ)求圓
的方程
(II)設(shè)圓
和
軸相交于
,
兩點,點
為圓
上不同于
,
的任意一點,直線
,
交
軸于
,
兩點.當(dāng)點
變化時,以
為直徑的圓
是否經(jīng)過圓
內(nèi)一定點?請證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知一個圓經(jīng)過
直線
和圓
的兩個交點,且有最小面積,求此圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知兩圓
和
都過點E(3,4),則經(jīng)過兩點
、
的直線方程為
A.3x+4y+22=0 | B.3x-4y+22="0" | C.4x+3y+22=0 | D.4x-3y-22="0" |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖,⊙
與⊙
相交于點A和B,經(jīng)過A作直線與⊙
相交于D,與⊙
相交于C,設(shè)弧
的中點為M,弧
的中點為N,線段CD的中點為K. 求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線ax+2y-1=0與直線x+(a-1)y+2=0垂直,則a的值為 ;
查看答案和解析>>