圓C的方程為x2+y2-2x-2y-2=0,則該圓的半徑,圓心坐標(biāo)分別為
A.2,(-2,1)B.4,(1,1)C.2,(1,,1)D.,(1,2)
C
分析:圓的一般方程化為標(biāo)準(zhǔn)方程,即可確定圓的半徑和圓心坐標(biāo).
解答:解:圓的一般方程化為標(biāo)準(zhǔn)方程可得:(x-1)2+(y-1)2=4
∴圓的半徑和圓心坐標(biāo)分別為2,(1,2)
故選C.
點評:本題考查圓的一般方程,考查圓的半徑和圓心坐標(biāo),解題的關(guān)鍵是將圓的一般方程化為標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方程表示一個圓.
(1)求實數(shù)的取值范圍;
(2)求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點,且圓心在直線上圓的方程是(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在一張矩形紙片上,畫有一個圓(圓心為O)和一個定點F (F在圓外).在圓上任取一點M,將紙片折疊使點M與點F重合,得到折痕CD.設(shè)直線CD與直線OM交于點P,則點P的軌跡為
A.圓  B.橢圓   C.雙曲線    D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分) 在平面直角坐標(biāo)系中,已知直線被圓[截得的弦長為
(Ⅰ)求圓的方程
(II)設(shè)圓軸相交于,兩點,點為圓上不同于的任意一點,直線,軸于,兩點.當(dāng)點變化時,以為直徑的圓是否經(jīng)過圓內(nèi)一定點?請證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個圓經(jīng)過直線和圓的兩個交點,且有最小面積,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓都過點E(3,4),則經(jīng)過兩點、的直線方程為
A.3x+4y+22=0B.3x-4y+22="0" C.4x+3y+22=0D.4x-3y-22="0"

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,⊙與⊙相交于點A和B,經(jīng)過A作直線與⊙相交于D,與⊙相交于C,設(shè)弧的中點為M,弧的中點為N,線段CD的中點為K. 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線ax+2y-1=0與直線x+(a-1)y+2=0垂直,則a的值為         

查看答案和解析>>

同步練習(xí)冊答案